
Adaptive Supertagging for Faster Parsing

JONATHAN K. K UMMERFELD

SID: 306150948

S
I D

ERE·M E
N

S·EAD
E
M

·M UT AT
O

Supervisor: James R. Curran

This thesis is submitted in partial fulfillment of
the requirements for the degree of

Bachelor of Science (Honours)

School of Information Technologies
The University of Sydney

Australia

2 November 2009

Abstract

Statistical parsers are crucial for tackling the grand challenges of Natural Language Processing. The

most effective approaches to these tasks are data driven, but parsers are too slow to be effectively used

on large data sets. State-of-the-art parsers generally cannot process more than one sentence a second,

and the fastest cannot process more than fifty sentences a second. The situation is even worse when

they are applied outside of the domain of their training data. The fastest systems have two components,

a parser, which has time complexityO(n3) and a supertagger, which has linear time complexity. By

shifting work from the parser to the supertagger we dramatically improve speed.

This work demonstrates several major novel ideas that improve parsing efficiency. The core idea is

that the tags chosen by the parser are gold standard data for its supertagger. This leads to the second

surprising conceptual development, that decreasing tagging accuracy can improve parsing performance.

To demonstrate these ideas required extensive developmentof the C&C supertagger, including imple-

mentation of more efficient estimation algorithms and parallelisation of the training process. This was

particularly challenging as the C&C supertagger is a state-of-the-art high performance system designed

with a focus on speed rather than flexibility.

I was able to significantly improve performance on the standard evaluation corpus by using the parser

to generate extremely large new resources for supertagger training. I have also shown that these methods

provide significant benefits on another domain, Wikipedia text, without the cost of generating human

annotated data sets. These parsing performance gains occurwhile supertagging accuracy decreases.

Despite extensive use of supertaggers to improve parsing efficiency there has been no comprehensive

study of the interaction between a supertagger and a parser.I present the first systematic exploration of

the relationship, show the potential benefits of understanding it, and demonstrate a novel algorithm for

optimising the parameters that define it.

I have constructed models that process newspaper text86% faster than previously, and Wikipedia

text 30% faster, without any loss in accuracy and without the aid of extra gold standard resources in

either domain. This work will lead directly to improvementsin a range of Natural Language Processing

tasks by enabling the use of far more parsed data.

ii

Acknowledgements

This year has been an epic process that I would not have been able to complete without support

from a raft of people. First and foremost, my supervisor, whocracked the whip when necessary and was

always there to answer my questions and give me a few more to think about.

A great deal of the implementation work for this project was completed as part of the JHU CLSP

Workshop. It was a wonderful opportunity to work in a team foran extended period and I would like

to thank the organisers – for making it happen, my supervisor– for bringing our team together, and a

fellow honours student, Tim Dawborn – for sharing the products of his culinary expertise. I would also

like to thank the entire “Parsing the Web” team, and in particular Jessika Rosener, who I collaborated

with on the parallelisation of the training process.

Many of the experiments described in this work required large scale computing resources and would

not have been possible without the support of Prof. Harrowell, who gave me access to the Silica com-

puting cluster.

The final form of this thesis is far kinder to the reader, especially those uninitiated to the mysteries

of NLP. This would not have been the case without the editing and suggestions provided by many of

my friends, in particular Casey Handmer, Anna Katrina Dominguez, Ben Hachey, Ian Oosterhoff, and

Nicky Ringland.

Finally, throughout this epic process I have always had the support of my family. Whether they

were providing a platform to bounce ideas off, cooking fuel to keep me going, or giving feedback on my

work, they have been there for me, and I am extremely grateful.

iii

CONTENTS

Abstract ii

Acknowledgements iii

List of Figures vii

List of Tables ix

Chapter 1 Introduction 1

1.1 Contributions .. 3

Chapter 2 Literature Review 6

2.1 Grammars .. 7

2.2 Supertagging .. 11

2.2.1 Supertagging for Combinatory Categorial Grammar 13

2.3 Summary .. 14

Chapter 3 Evaluation 16

3.1 Data .. 16

3.1.1 Training .. 16

3.1.2 Testing .. 17

3.2 Metrics .. 18

3.2.1 Significance Testing .. 19

3.3 Baseline Performance .. 20

3.4 Summary .. 22

Chapter 4 Algorithms 23

4.1 Background .. 23

4.1.1 Maximum Entropy Modeling .. 23

4.1.2 Perceptrons .. 24

4.1.3 Margin Infused Relaxed Algorithm 25

iv

CONTENTS v

4.1.4 The C&C Parser and Supertagger .. 25

4.2 Implementation .. 26

4.2.1 Averaged Perceptron .. 26

4.2.2 Margin Infused Relaxed Algorithm 27

4.3 Results .. 27

4.4 Summary .. 28

Chapter 5 Adaptation 29

5.1 Background .. 29

5.1.1 Semi-supervised Training .. 29

5.1.2 Semi-supervised Training for Parsers 31

5.1.3 Semi-supervised Training for theCCG Supertagger . 32

5.1.4 Message Passing Interface .. 33

5.2 Implementation .. 33

5.2.1 Parallelising Feature Extraction 34

5.2.2 Parallelising Feature Weight Estimation 35

5.3 Results .. 36

5.3.1 Scalability .. 36

5.3.2 North American News Corpus .. 38

5.3.3 Wikipedia .. 39

5.3.4 Cross-Corpus Evaluation .. 40

5.3.5 Algorithm Scalability .. 43

5.3.6 Summary .. 47

5.4 Summary .. 49

Chapter 6 Optimisation and Analysis 50

6.1 Background .. 50

6.1.1 Features .. 50

6.1.2 Parser – Supertagger Interaction 50

6.2 Implementation .. 51

6.2.1 New Features .. 51

6.2.2 Accurate Sentence Level Speed Measurements 51

6.3 Feature Extension .. 52

6.4 The Influence of Beta Levels .. 54

CONTENTS vi

6.5 Aggregated Analysis of Parser Behaviour 56

6.5.1 All Sentences .. 56

6.5.2 Only Successfully Parsed Sentences 57

6.5.3 Only Sentences Always Parsed .. 57

6.6 Behaviour by Sentence Length .. 61

6.6.1 All Sentences .. 61

6.6.2 Only Sentences Always Parsed .. 64

6.7 Interesting Sentences .. 66

6.7.1 Sentence 12 .. 66

6.7.2 Sentence 577 .. 67

6.7.3 Sentence 1791. .. 71

6.7.4 Sentence 212 .. 72

6.7.5 Sentence 274 .. 73

6.7.6 Sentence 302 .. 74

6.7.7 Sentence 596 .. 75

6.7.8 Sentence 691 .. 76

6.8 Optimal Coverage Algorithm .. 79

6.8.1 Correctness .. 79

6.8.2 Results .. 80

6.8.3 Issues .. 80

6.9 Summary .. 82

Chapter 7 Conclusion 83

7.1 Future Work .. 83

7.2 Contributions .. 85

Bibliography 87

List of Figures

2.1 ExampleCCG derivations for two sentences. 8

4.1 Equations for theMIRA update scheme. 25

5.1 Single thread model creation. 34

5.2 Parallel model creation. 34

5.3 Information flow for parallel estimation of maximum entropy models and perceptron models 35

5.4 Overall performance comparison on theWSJ. 47

5.5 Overall performance comparison on Wikipedia. 48

6.1 Parsing behaviour over all sentences in section 00 of theWSJ. 58

6.2 Parsing behaviour over parsed sentences in section 00 oftheWSJ. 59

6.3 Average parsing behaviour for parsed sentences in section 00 of theWSJ. 60

6.4 Stats by length for coverage, over all sentences. 62

6.5 Stats by length for supertag accuracy, over all sentences. 63

6.6 Stats by length for recall, over all sentences. 63

6.7 Stats by length for speed, over all sentences. 64

6.8 Stats by length for supertag accuracy, over parsed sentences. 65

6.9 Stats by length for precision, over parsed sentences. 65

6.10 Stats by length for recall, over parsed sentences. 66

6.11 Parsing behaviour for the sentence 12 sentence in section 00. 67

6.12 Parsing behaviour for the sentence 577 sentence in section 00. 68

6.13 Parsing behaviour for the 1791st sentence in section 00. 72

6.14 Parsing behaviour for the sentence 212 sentence in section 00. 73

6.15 Parsing behaviour for the sentence 274 sentence in section 00. 74

vii

L IST OF FIGURES viii

6.16 Parsing behaviour for the sentence 302 sentence in section 00. 75

6.17 Parsing behaviour for the sentence 596 sentence in section 00. 76

6.18 Parsing behaviour for the sentence 691 sentence in section 00. 78

List of Tables

2.1 Performance comparison of several state-of-the-art parsers. 9

2.2 Comparison of supertagger accuracy, including a range of settings for multitaggers. 14

3.1 Accuracy of the C&CPOStagger. 20

3.2 Baseline supertagging accuracy usingPOStags produced by the C&CPOStagger. 21

3.3 Baseline model performance. 22

4.1 Performance comparison of model estimation algorithm on theWSJ. 28

4.2 Comparison of training time for several model estimation algorithms. 28

5.1 Small scale scalability tests of the parallelGIS implementation. 36

5.2 Large scale scalability tests of the parallelGIS implementation. 37

5.3 Comparison of training time for parallel implementations ofGIS andMIRA . 37

5.4 Performance of models trained usingNANC data. 38

5.5 Performance of models trained using Wikipedia data. 39

5.6 The effect of adaptive training on supertagging accuracy. 40

5.7 The effect of adaptive training on parsing accuracy. 42

5.8 The effect of adaptive training on parsing speed. 43

5.9 Number of sentences parsed at each level for a range of models. 44

5.10 Comparison ofWSJperformance for various model estimation algorithms. 45

5.11 Comparison of Wikipedia performance for various modelestimation algorithms. 46

6.1 Subtractive analysis of all-tag feature sets using fourmillion sentences. 52

6.2 Subtractive analysis of various feature sets using up tofour hundred thousand sentences. 53

6.3 Performance comparison for models using default, or tuned beta levels. 55

6.4 Break down of data based on sentence length. 61

ix

L IST OF TABLES x

6.5 Speed and coverage for the parameters produced by the coverage optimisation algorithm. 81

6.6 Performance of the best parameters produced by the coverage optimisation algorithm. 81

CHAPTER 1

Introduction

The aim of this project was to substantially improve the efficiency and accuracy of natural language

parsing, without the costly development of more gold standard data. This work falls within the field of

Natural Language Processing (NLP), a part of Artificial Intelligence research that focuses onbuilding

systems that intelligently use the contents of documents written in natural language.

Parsing is the process of analysing a set of tokens, such as the words in a sentence, and extracting

syntactic structure. In some artificial languages, such as computer programming, care has been taken

in the design to ensure that each "sentence" has only one possible interpretation. But natural language

has evolved over time, and allows ambiguous sentences that are context sensitive. Also the rules (or

grammar) that define natural language are not fixed or completely known. This makes parsing extremely

difficult.

This ambiguity and lack of a well-defined grammar are challenges for parsers – computer programs

designed to extract the syntactic structure of a sentence innatural language. Accurate and efficient

parsing is critical in a range of areas. Examples include question answering – to understand the content of

documents, computer human interaction – to understand natural language input from users, and machine

translation – to ensure the meaning of text is not lost in translation.

The question-answering task involves constructing a system that can understand a question posed in

natural language, search for an answer in a collection of documents, and return the answer in an appro-

priate form (Lehnert, 1977). For example, given the question "When was the last time someone other

than the leader of the majority party in the House of Representatives was Prime Minister of Australia?"

the system would be expected to give a response such as "1975"or "The 1975 Constitutional Crisis".

By providing the syntactic structure of the question, parsers allow us to determine the constraints that

define our answer. If we have parsed our document collection we can then determine which facts meet

1

1 INTRODUCTION 2

the constraints in the question. The primary reason for limited use of parsers in this field is that the time

required to parse a large document collection is far too large to be feasible.

Another task where parsers are proving useful is automatic translation of text from one language to

another. Differences in grammar, idioms, vocabulary and morphology are just a few of the challenges

for machine translation systems. Using syntactic information is a popular method of approaching these

problems, effectively using syntax to extract meaning and then re-expressing the meaning, rather than

trying to translate individual words or phrases (Brownet al., 1990). Parsers are a crucial part of this

approach as they provide the syntactic structure of the sentence. The problem with this approach is that

the performance of these statistical machine translation systems is highly dependent on the amount of

training data used. Faster parsers would enable the exploitation of larger amounts of training data.

A more specific example of one of the applications of parsing is ‘anaphora resolution’, determining

which entity a given pronoun refers to (Mitkov, 2002). For example, in the sentence “The theory is

that Seymour is the chief designer of the Cray-32, and without him it could not be completed.” the

word ‘him’ refers to ‘Seymour’ and the word ‘it’ refers to the‘Cray-32’. Clearly such understanding is

crucial for a system that aims to understand the meaning of documents. People resolve the ambiguity

of which pronoun links to which proper noun through a combination of grammatical and general world

knowledge, neither of which are as well developed in computer systems as they are in people. Computer

systems resolve the ambiguity by considering the syntacticstructure of the sentence, as determined by a

parser (Geet al., 1998).

All of these tasks rely on the use of large data sets. The size of these sets is limited by the speed and

domain dependence of parsers. At between one and fifty sentences per second, state-of-the-art wide

coverage parsers are too slow to be feasibly used. To processthe estimated ten trillion words on the

English web would take over fifteen thousand years, and the challenge is even greater as more content

is constantly being added and large sections, such as Wikipedia, are constantly changing. The number

of people using the web and the amount of activity online is continuously increasing, so we cannot rely

on increases in computing power to solve this problem. We need algorithmic solutions that improve the

efficiency of parsing.

Two possible approaches to improving efficiency are to exploit more training data annotated by humans,

or to accept a decrease in accuracy in return for improved speed. Neither of these options are satisfactory,

1.1 CONTRIBUTIONS 3

as the first is extremely costly and domain dependent and the second simply trades speed for accuracy,

leaving a new problem.

The big idea that gives the most efficient parsers their speedis ‘supertagging’ (Bangalore and Joshi,

1999). The parsing process has a time complexity ofO(n3), wheren is the length of the sentence.

Supertagging, which has a time complexity ofO(n), involves reducing the number of possibilities the

parser has to consider by assigning a role to each word in the sentence. Using the supertagger to effec-

tively do some of the parsers work leads to a considerable improvement in efficiency, as the parser has

a considerably greater time complexity. In this work I take this idea further, passing more work to the

supertagger in a novel manner.

1.1 Contributions

In this work I improve the efficiency of a state-of-the-art natural language parser by using the output

of the system to retrain one of the earlier stages. The first step in the system is to run the supertagger,

which generates tag sets for each word in the sentence. The parser then selects one tag for each word

and forms a derivation. The core idea of this thesis is that wecan improve efficiency by reducing the set

the supertagger supplies for each word to be just the tag thatthe parser would have used anyway. This

novel idea means we can obtain vast amounts of extra “gold standard” training data by using the parser

to annotate text. In fact, the resources developed as part ofthis work were too large for the original

architecture of the system.

The original system took several hours to train on forty thousand sentences of annotated data. Even if

extra data annotated by people were available, the trainingprocess would not have been able to scale

up as it would have hit memory constraints and taken far too long. As part of the 2009 Johns Hopkins

University Center for Language and Speech Processing Summer Workshop I implemented significant

changes to the C&C supertagger training process. As a state-of-the-art high performance system, the

code was highly optimised and complex. I implemented two perceptron-based algorithms for model

estimation and parallelised the entire training process including feature extraction and model estimation.

These changes made it possible to train on vast amounts of data. Without the parallelisation,RAM usage

would have been a major bottleneck. Without the perceptron-based algorithms, training would have

been far too slow for large scale exploration. Models were trained using the final system that had two

orders of magnitude more features, and others used three orders of magnitude more training data.

1.1 CONTRIBUTIONS 4

To generate more training data I used the initial system to parse all of Wikipedia, and all of the Wall

Street Journal data in the North American News Corpus. Afterfiltering, described in Chapter 3, this

amounted to26, 000, 000 sentences from Wikipedia and5, 349, 000 from the Wall Street Journal, far

more than the40, 000 commonly used to construct supertagging models. This new data, generated

by the parser, was used to retrain the supertagger. By training models on progressively more data I

show that this training method can lead to significant improvements in speed and accuracy. Not only is

performance improved on newspaper text, the traditional domain for parser construction and evaluation,

but also on Wikipedia. Without any human annotated data or adjustments to the parser I was able to

improve performance on the web text domain. In this way, I clearly demonstrate that tags chosen by

the parser are what the supertagger should be aiming to produce. By training on the parser’s output we

can improve performance not only in the original domain the parser was constructed for, but in other

domains. The results of this work were recently accepted forpublication at the Australasian Language

Technology Workshop.

While the idea that the parser’s output is gold training datafor its supertagger is new, the idea of supertag-

ging itself has been in use for a decade. However, in this timethere has been no careful investigation of

the interaction between a parser and its supertagger. The most successful systems use a series of levels to

balance speed and accuracy. The initial level is very restrictive, forcing the supertagger to provide only

a small set of possible tags. At this level the parser is much faster, as it has far fewer options to consider,

but also has relatively low coverage as many sentences do notreceive a set of tags that can be combined

to form a derivation. For these sentences the system drops down a level, rerunning the supertagger with

looser restrictions, providing the parser larger tag sets and more flexibility. By repeating this process

several times coverage can be kept close to100% while most sentences are parsed early on at high speed.

Determining the right set of levels is extremely difficult asa change to one will affect the sentences seen

at another. Without a clear picture of this interaction, these parameters have been chosen in an ad hoc

manner up until now, with only slight local optimisations. Iperformed the first systematic exploration

of this behaviour and propose one method of optimising speedwhile maintaining complete coverage.

Such an algorithm is needed because not only is determining these parameters difficult, they need to be

determined separately for every model.

Overall this work has made the parser run86% faster on the Wall Street Journal and30% faster on

Wikipedia, without any loss in accuracy. Models were trained with orders of magnitude more data and

features than previously, and in similar or only slightly longer periods of time. Finally, the analysis

1.1 CONTRIBUTIONS 5

performed here is the first systematic investigation of the behaviour of the parser and supertagger. These

improvements will translate directly into improvements insystems for question answering, machine

translation, anaphora resolution, and many other tasks inNLP. Without improving the speed of parsers

we would be severely crippling these systems, limiting the maximum attainable performance.

CHAPTER 2

Literature Review

The work I have completed this year focuses on a particular aspect of the Natural Language Processing

pipeline – supertagging, labelling words with a detailed description of their role in the sentence. This

idea has developed over the past fifteen years and is an integral part of the parser I used, without which

it would be considerably slower. However, before exploringthe previous work in this field there are a

few terms that need to be explained:

: The Penn Treebank

The ‘Penn Treebank’ (PTB) (Marcuset al., 1993a) is a collection of documents annotated with

POS tags and syntactic trees. It contains a range of documents, but when it is mentioned here

I am generally referring to the Wall Street Journal sections, which are based on newspaper

content from 1989.

: Hidden Markov Models

Hidden Markov Models (HMMs) are used when we can observe a series of emissions from

a system and are trying to predict the states that the system moved through while making

those emissions. For supertagging we are effectively observing a system that emits words,

which we can see, and is moving through states correspondingto supertags, which we want to

determine. The method works by considering the complete setof possible tags for each word

and two sets of probabilities, transition and emission probabilities (Baum and Petrie, 1966).

Transition probabilities measure the chance of a particular series of tags preceding the current

one. Emission probabilities measure the chance of the current word being emitted if a particular

tag is chosen.

: The Viterbi Algorithm

One algorithm for usingHMMs to choose tag sets is the Viterbi algorithm (Viterbi, 1967).

It moves through the sentence, determining the probabilities of all the possible tags for the

current word and then using them, the transition and emission probabilities, to determine the

6

2.1 GRAMMARS 7

probability of each possible tag for the next word. Once the end of the sentence is reached

the most probable tags can be assigned to the last word, and the paths that led to them can be

traced back through the sentence to determine the sets of tags for the other words. A more

sophisticated alternative is the Forward-Backward algorithm, so called because once reaching

the end of the sentence it repeats the process in the other direction. The set of transition

probabilities are changed to be based on the words that follow a given word while the emission

probabilities remain the same.

2.1 Grammars

Two main classes of grammars have been used to try to understand natural language, phrasal and lex-

icalised grammars. Phrasal grammars generally define a small set of labels that capture the syntactic

behaviour of a word in a sentence, such as noun and adverb, andthen use a large set of rules to define

how the words interact. These rules can then be used to construct a phrase structure tree in which the

leaves are the words and the internal nodes are applicationsof rules. Lexicalised grammars take a differ-

ent approach, providing a much larger set of labels, orcategories, and only a few rules. The categories

provide a more detailed description of a word’s purpose in a sentence, leaving less work for the rules

that determine how categories combined to form the parse tree.

One example of a lexicalised grammar formalism is Combinatory Categorial Grammar (CCG) (Steedman,

2000). InCCG there are two types of categories. The first type areatomicand are one of S, N, NP, PP,

for clauses, nouns, noun phrases and prepositional phrasesrespectively. The second type of category

is complex and contains two parts, an argument and a result, denoted by either ‘Result / Argument’

or ‘Result \ Argument’. The slashes indicate whether the Argument is expected to lie to the right or

left respectively, and the result and argument are categories themselves (atomic or complex). These

categories are then combined according to seven rules, forward and backward application, forward and

backward composition, backward crossed substitution, type raising and coordination, some of which are

demonstrated below.

Figure 2.1 presents two examples of sentences and theirCCG derivations. In both examples the line

directly beneath the words contains the categories that were assigned to each word, NP forI, (S\NP)/NP

for ate and so on. The lines that follow show a series of rule applications, building up the parse tree.

These examples demonstrate three types of rules. The lines with a > sign at the end indicate forward

2.1 GRAMMARS 8

application, in which a complex category combines with the category to its right. This is possible when

the complex category is of the form ‘Result / Argument’ and its argument is the same as the tag to

its right, such as in the first derivation when the (S\NP)/NP category forate combines with the NP

category forpizza to produce an S\NP category. The lines with a< sign at the end are showing

backward application, which is the same idea, but in the opposite direction. This can be seen in the last

step of each example, when the S\NP category combines with the NP category to its left to form an S

category.

Note in particular the change of tag forwith in the two examples and its affect on the subsequent

rule applications. In the first case the wordswith cutlery combine withate pizza, as shown by

the combination of the S\NP and (S\NP)\(S\NP) categories. This makes sense since the wordswith

cutlery are adding extra information to the verbate. However, in the second casewith anchovies

is combined withpizza to form a single noun phrase before being combined withate. Again, this make

sense, sincewith anchovies is describing a property ofpizza. Now consider replacinganchovies

with another word, such ascoffee, in which case the correct analysis would be the first one, despite

the two words being similar in the sense that they are both a form of food. People are able to distinguish

between these two cases through the use of extra knowledge about the regular toppings on pizza, but in

general a parser does not have such extra knowledge to draw upon. This ambiguity, called prepositional

phrase attachment, is one of the reasons parsing is so difficult.

I ate pizza with cutlery

NP (S\NP)/NP NP ((S\NP)\(S\NP))/NP NP
> >

S\NP (S\NP)\(S\NP)
<

S\NP
<

S

I ate pizza with anchovies

NP (S\NP)/NP NP (NP\NP)/NP NP
>

NP\NP
<

NP
>

S\NP
<

S

FIGURE 2.1: ExampleCCG derivations for two sentences.

TheCCG parser used in this work is the C&C parser (Clark and Curran, 2003, 2007b). The C&C parser

applies labels to words using a variant of the Viterbi algorithm for Hidden Markov Models, and then

determines the correct series of rules to apply through use of the CKY chart parsing algorithm and

2.1 GRAMMARS 9

Accuracy Speed
Parser Precision Recall F-score Time (min.) Sentences per second

Charniak 89.5% 89.6% 89.5% 28 1.4
Collins 88.3% 88.1% 88.2% 45 0.9
Sagae 87.5% 87.6% 87.5% 11 3.6
Hockenmaier 84.3% 84.6% 84.4% Not Given Not Given
CCG 88.3% 87.0% 87.6% 1.9 21.0

TABLE 2.1: Performance comparison over section 23 of the Penn Treebank for a range
of parsers (Clark and Curran, 2007b; Sagae and Lavie, 2005; Hockenmaier, 2003). Pre-
cision and recall are calculated over sentences receiving aparse only. The first three
parsers are evaluated on accuracy of labeled constituents in the Penn Treebank, while
the last two are evaluated on predicate-argument dependencies in CCG-bank, aCCG

annotated corpus that uses the same base text as the Penn Treebank.

dynamic programming. The results in Table 2.1 demonstrate that it is a particularly efficient state-of-

the-art parser.

As Figure 2.1 demonstrates, for a given word, the choice of tag is highly dependant on its context, and

may require world knowledge (such as the regular toppings for pizzas). Without this knowledge, parsers

must consider all possible parses, and since this could apply to every word in the sentence, it leads to

a time complexity for parsing of at leastO(n3), and in the case ofCCG, O(n6). In most applications

time is an important constraint, meaning that at current speeds most parsers cannot feasibly be used,

regardless of how accurate they are. Consider the speeds shown in Table 2.1. The most accurate parsers

are able to parse approximately one sentence per second. At this speed a typical novel containing 5,000

sentences on average 20 words long, would take over 80 hours to parse. Clearly, to parse the entire

English canon using one of these parsers would take an unacceptable amount of time, let alone parsing

a corpus such as Wikipedia or working online, responding to users.

For CCG the parsing process is preceded by ‘Supertagging’, where the initial categories are assigned to

each word, such as the tag (S\ NP)/NP for the wordate in Figure 2.1. However, before this occurs

there is another stage, Part of Speech (POS) tagging. POS tags are the familiar classes of words taught

in primary school - nouns, verbs, adjectives, and so on. Evenat this stage there is some degree of

confusion, as many words are included in multiple classes, such as the word ‘tag’, which can be used

as a noun (the correct tag is noun), or a verb (the program willcorrectly tag all verbs). Determining the

correct tag for a given word requires examination of its context. Note that in Figure 2.1 the wordwith

would be labelled with the samePOStag, preposition, in both cases.

2.1 GRAMMARS 10

Supertagging can improve the speed of parsers by decreasingthe range of possible categories for each

word in the sentence. As in Part of Speech tagging, this is achieved by considering a lexicon of tags each

word could be assigned and reducing each set based on the surrounding context. The difference is that

the sets ofPOStags used in phrasal grammars are orders of magnitude smaller than the sets of supertags

used in lexicalised grammars.

By reducing the number of tags to consider for each word, supertaggers leave parsers with far fewer

possible derivations to consider. In the ideal case, when a supertagger is able to select a single tag for

each word, the parser only needs to determine how to combine the tags to form a valid parse. The

syntactic content of supertags has led to the description ‘almost parsing’ (Joshi and Bangalore, 1994)

for supertagging because of the great reduction it causes inthe range of possible parses.

The structure of supertaggers is a balance between performance and complexity. If the tagger is too

simple its performance will suffer. If it uses greater information and more complex algorithms it will be

slower, effectively moving the time cost of parsing from theparser to the tagger, without an overall im-

provement. Most supertaggers use algorithms with complexity O(n) and only consider a small window

around the word being tagged. Commonly used features include the surrounding words, theirPOS tags

and, if already assigned, their supertags. This combination of extremely efficient algorithms and local

context leads to a great saving of work for parsers, at very little extra cost.

The actual tagging process can be performed in a variety of ways. Initially supertaggers were used to

choose a single tag, specifically the most common tag for the given word in the given context in the

training data. This has the disadvantage that if the set of tags given does not lead to a valid parse, the

parser is unable to consider alternatives. The alternative, providing multiple possible tags, has its own

problems. The more tags that are assigned, the greater the number of possible derivations that the parser

has to consider and the slower it will be. However, if the number of tags assigned is decreased too much

we return to our original problem of accuracy losses. Striking a balance between speed and accuracy is

difficult and ultimately it would be preferable to improve supertagging so that only a small set is required

to attain high accuracy.

As with most tasks in Natural Language Processing, the training data is a crucial part of model develop-

ment, and the available gold-standard annotated data is limited. One way of overcoming this challenge,

which has been successfully applied to classifiers, is ‘semi-supervised training’. This term covers a

2.2 SUPERTAGGING 11

range of methods that all involve using a system to automatically label more data, expanding the train-

ing dataset. However, since the amount of unlabelled data available is orders of magnitude larger than

the amount of labelled data, these methods require a scalable, high performance structure to be utilised

effectively.

2.2 Supertagging

Super-tags were first proposed by Joshi and Bangalore (1994)as the equivalent ofPOS tags for Lexi-

calized Tree-Adjoining Grammar (LTAG). As previously mentioned, the difference betweenPOS tags

and supertags is that the latter contain much more detailed syntactic information. To provide this extra

information the sets of supertags must be much larger. Usually a supertag set contains on the order of

hundreds of tags. One automatically extracted set of tags for LTAG had 3964 tags (Chenet al., 2002).

Most POStag sets contain less than fifty possible tags. For instance,the Penn Treebank uses only thirty-

five (Marcuset al., 1993b).

When supertagging, even once the set of tags available for each word is cut down to those observed in

training data or defined by a lexicon, the set of tags that could be assigned to each word is still large.

The first supertaggers selected a single tag for each word based on its local context. To handle data

sparseness words were not used; instead aPOS tagger was run first and n-grams of surroundingPOS

tags were used to define the context of a word (Joshi and Bangalore, 1994). The examples in Figure 2.1

clearly demonstrate that this solution to the data sparseness problem will lead to mistakes, as this model

would see the same set ofPOStags for each sentence, and therefore labelwith incorrectly in one of the

cases.

To experiment with a supertagger Chandrasekar and Bangalore (1997a) incorporated an n-gram su-

pertagger into an information retrieval system. The systemwas designed to identify sentences related to

‘appointments’, such as ‘John Smith was appointed chairmanof the board’. The supertagger was used

to identify noun and verb chunks in each sentence. These wereused to form ‘augmented patterns’ for

relevant and irrelevant examples. The same method was applied to each sentence in the test set and if

a pattern was observed that had been identified during training, the sentence was classified accordingly.

This system was also used to perform a comparison betweenPOS tags and super tags. ThePOS tags

were used to form similar ‘augmented patterns’ and tested inthe same way. As expected, the extra

2.2 SUPERTAGGING 12

information provided in the supertags led to less generalisation, reflected by fewer incorrect identifica-

tions of appointments, but also more instances of appointments being missed. Overall supertags were

demonstrated to be more effective (Chandrasekar and Bangalore, 1997c). Supertagging was slower than

POS tagging by approximately a factor of two, but this is still much faster than full parsing, and the

supertagger always returns an answer, where as a parser may not be able to determine a parse in some

cases.

This system was also used to consider how much context is mosteffective (Chandrasekar and Bangalore,

1997b). By varying the amount of context used between one andfour words either side of the word

being considered it was shown that specifying more context improves precision, since the supertagger

is more certain about the context being considered, but decreases recall as data sparseness becomes a

greater issue. Based on F-Score measurements Chandrasekarand Bangalore found that one or two words

either side was the most effective feature set. These observations fit with the intuitive idea that a more

specifically defined context will leader to greater certainty, but less generalisation.

One issue for assigning a single tag is that if it does not leadto a valid parse the parser has no other

alternatives to consider. Chenet al. (1999) discussed the possibility of assigning a set of tags,‘multi-

tagging’, as well as experimenting with long distance features based on preceding phrase heads. Two

methods for defining classes of tags were considered; context based classes, and confusion classes.

Context based classes were defined by sets of tags that were observed in the presence of the same set

of features in the training data. Confusion classes were defined by running the supertagger on a small,

annotated data set and placing tags that were assigned incorrectly into the same class as the true tag.

Assigning multiple tags to each word raises the question of what order the tags should be considered.

Chenet al. (2002) approached this question by using a trigram based supertagger to choose multiple

tags, and the Viterbi algorithm to determine the most likelysequence. Then, instead of associating

each word with a single tag from the most likely path, each word was associated with then tags that

had the highest prefix probabilities. First the system was evaluated without re-ranking the tag sets

by passing them to a parser and counting the number of sentences successfully parsed. As expected,

increasing the size of the tag sets led to an increase in the supertagger’s accuracy and the number of

parsed sentences. However, when more than four tags were assigned parsing was rendered infeasible due

to time constraints. After establishing the benefits of moreaccurate supertagging, Chen et al investigated

re-ranking based on a range of features, demonstrating improvements of over1%. Clearly, the more

2.2 SUPERTAGGING 13

accurate the set of supertags provided the higher coverage will be, but if this improvement is achieved

by supplying more tags it incurs a speed penalty.

The effect of supertagging on parsing efficiency demonstrates that lexical ambiguity is an important

factor in parsing complexity (Sarkaret al., 2000). However, this method of increasing efficiency often

comes at a cost of coverage and Sarkar et al showed that the accuracy of these supertaggers on automat-

ically extractedLTAG grammars is too low for successful integration into a full parser.

2.2.1 Supertagging for Combinatory Categorial Grammar

Supertagging was first applied to Combinatory Categorial Grammar (CCG) by Clark (2002), who per-

formed comparisons withPOS taggers andLTAG supertaggers. Rather than using a Hidden Markov

Model, the supertagger determined the probability of each word being assigned each possible tag through

Conditional Maximum Entropy Modeling. This method was chosen because it provides greater flexi-

bility when adjusting the feature set and makes it easier to define a multi-tagger. Rather than defining

a fixed number of tags to be produced per word the supertagger included all tags whose probabilities

were within some factor,β, of the highest probability category. Similar settings were applied to anLTAG

supertagger (Chenet al., 1999) and theCCG supertagger was shown to perform worse for single tag-

ging, but better for multi-tagging. As forLTAG supertaggers, the use of supertagging forCCG improved

the speed of the parser, with a greater improvement for smaller tag sets, though with a slight loss in

coverage.

The weights for features in the maximum entropy model for theCCG supertagger were estimated using

Generalised Iterative Scaling (GIS) (Darroch and Ratcliff, 1972), a method chosen because it isa very

simple algorithm that often outperforms more efficient algorithms in practise. Curran and Clark (2003)

showed that a correction feature was not required to guarantee convergence, even when the sum of the

feature values for each event is not constant. Additionally, it was shown that by applying a Gaussian

prior instead of a frequency cutoff additional features canbe incorporated without causing over-fitting.

This is useful because the extra features may allow the supertagger to be more confident in the tags

chosen, and possibly lead to a reduction in the number of the tags assigned to each word.

By tightly integrating a supertagger with aCCG parser, Clark and Curran (2004) were able to achieve

great improvements in speed without sacrificing accuracy. The crucial development that made this

possible was the use of feedback between the parser and supertagger during parsing on both training

2.3 SUMMARY 14

Supertagger Accuracy Evaluation Corpus Av. Tag Set Size

Joshi and Bangalore (1994) 77.3% 100 sentences from theWSJ 1
Chandrasekar and Bangalore (1997c) 89.4% 20,000 words fromtheWSJ 1
Bangalore (1997) 92.2% 50,000 words from theWSJ 1
Chenet al. (2002) 82.99% Section 22 of thePTB 1
Chenet al. (2002) 90.42% Section 22 of thePTB 2
Chenet al. (2002) 94.19% Section 22 of thePTB 8
CCG, Clark (2002) 90.5% Section 23 ofCCG-bank 1
CCG, Clark and Curran (2004) 97.0% Section 00 ofCCG-bank 1.4
CCG, Clark and Curran (2004) 98.5% Section 00 ofCCG-bank 2.9
CCG, Clark and Curran (2004) 99.1% Section 00 ofCCG-bank 21.9

TABLE 2.2: Comparison of supertagger accuracy, including a rangeof settings for multitaggers.

and test data. To improve efficiency only local features wereused, eliminating the need for the Viterbi

algorithm. During training the supertagger was used to select a set of plausible but incorrect tags, to

which the correct tag was added, producing a set for the parser similar to those that would be produced

by the supertagger on unseen data. When parsing unseen data the supertagger initially used a largeβ

value, and while the parser was unable to determine a parse the value was gradually decreased, expanding

the tag sets. These methods increased the speed of the C&C parser by a factor of seventy-six, making it

an order of magnitude faster than comparable systems. As Table 2.2 shows, the C&C (2004) supertagger

produced much more accurate tag sets for a range of tag set sizes.

Supertagging has subsequently been combined with a fullLTAG parser (Sarkar, 2007). The influence of

supertagging on parsing efficiency was again demonstrated,and the use of co-training the supertagger

on the parser’s output was shown to be more effective than entirely supervised training methods.

2.3 Summary

Supertaggers have been used effectively in a range ofNLP tasks, such as information retrieval and pars-

ing. By reducing the set of possible lexical categories for each word in a sentence they provide a crucial

source of information that can dramatically improve efficiency. While they are not perfect and in some

cases will provide incorrect tags, through multi-tagging and tight integration a balance of speed and

accuracy can be achieved that is beneficial overall.

However, accurate supertagging is only possible when multiple tags are supplied, and every extra tag that

is assigned as a possibility increases the number of derivations the parser must consider. Any decrease

2.3 SUMMARY 15

in ambiguity should translate directly to an increase in speed, but simply supplying fewer tags using

current models would lead to a decrease in accuracy. Insteadwe should aim to reduce the number of

tags provided that the parser does not use, ie only supplyingone tag for each word – the tag that the

parser would have used anyway.

CHAPTER 3

Evaluation

Before describing the experiments performed it is important to establish the baseline system and the

methods that will be used to evaluate all changes. This chapter also describes the development of the

extra training data that is used throughout.

3.1 Data

This work has used two forms of data, newspaper text and web text. Specifically, I have used 5.4 million

sentences from the Wall Street Journal (WSJ) between 1987 and 1996 in the North American News

Corpus (NANC), and 26 million sentences from a 2009 dump of the English section of Wikipedia. The

first set was chosen as the standard parser evaluations are performed on newspaper text from theWSJ.

Wikipedia was chosen because web text, and Wikipedia in particular, have recently become very popular

resources inNLP. Also, while Wikipedia and newspaper text are definitely different, Wikipedia is still

predominantly made up of well formed sentences, as opposed to a great deal of other web text, making

it a sensible first step towards parsing web text.

3.1.1 Training

The standard corpus for parser training and evaluation is the Penn Treebank (PTB) (Marcuset al.,

1993b), a collection of documents annotated withPOS tags and syntactic trees. I have used CCGBank

(Hockenmaier and Steedman, 2001), a translation of the bracketing structure of the Penn Treebank to

the CCG formalism (Steedman, 2000). For training I have used section 02-21, which consist of39, 604

sentences originally from the 1989WSJ. No such corpus was available for Wikipedia.

To produce more training data I automatically labelled the resources described above. The raw text was

tokenised using theNLTK tokeniser (Birdet al., 2009), and parsed using the C&C parser and models

16

3.1 DATA 17

version 1.021. To ensure no overlap occurred between our automatically labelled WSJ data and the

CCGBank data all of the 1989 data in theNANC was excluded. For the Wikipedia data I applied a set of

simple rules to exclude instances as described below:

• At least6 tokens

List entries - "Discography."

• At most125 tokens

Entire lists that appear as a single sentence

• At least one word must start with a lowercase letter

Titles - "The Davis Chinese Christian Church."

• The first character must be a letter

Strange data artifacts - ";CD Two."

• The first token cannot start with ‘Category’

Structure information - "Category:WikiProject New Hampshire articles."

• The last three tokens cannot form "refer to ."

Disambiguation page headings - "... may refer to ." and "... can refer to ."

The automatically labelled data from both corpora was also altered slightly due to parser limitations:

• Removed non-printable characters

For example, "... for a cost of \xc2\xa31.50." became "... for a cost of 1.50."

• Translated from utf-8 to ASCII

• Replaced all vertical bars with colons as vertical bars are used as separators in the parser input

And finally, all sentences longer than250 tokens were excluded from theNANC data. The sentences this

affected were generally long lists of scores or stock marketresults.

3.1.2 Testing

For theWSJ I used section 00 of CCGBank to evaluate accuracy. The annotations in CCGBank include

gold standard grammatical relations for all sentences, as well as the lexical category for each token.

These 1,913 sentences allowed us to measure the overall change in parser performance, as well as

supertagging performance. For Wikipedia I used a recently developed set of300 sentences annotated

1http://svn.ask.it.usyd.edu.au/trac/candc

3.2 METRICS 18

with grammatical relations and1000 sentences labelled with lexical categories.(Clarket al., 2009) The

WSJand Wikipedia–300 sets contain45422 and6696 word–category pairs respectively. It is also worth

noting that these sets were created by running the supertagger, then manually correcting the answers,

which may have introduced some bias in favour of the supertagger.

To measure speed accurately I needed much larger sets. I set aside10, 000 sentences from the 1988WSJ

in theNANC for these measurements, excluding them from the training data described above. Similarly,

10, 000 sentences of Wikipedia data were excluded from the trainingset and used for speed evaluation.

3.2 Metrics

Before considering the metrics used it is important to understand the concept of ‘beta levels’. When

choosing the tags to assign the C&C supertagger determines aranking for the possible tags for each

word. Assigning only the top tag does not lead to high enough accuracy to enable wide coverage parsing.

Rather than assigning a fixed number of tags, the top three forexample, the C&C supertagger assigns a

variable number based on a probability distribution expressing confidence. Specifically, every tag that is

within a certain fraction, beta, of the most likely tag is included. This distribution varies for every word

and its context, so the number of categories assigned to eachword by the supertagger depends heavily

on the beta level used.

This presents a problem because the more categories that areassigned, the higher the tagging accuracy,

and the appropriate beta levels for a model depend highly on the properties of its weight distribution.

To fairly compare the models presented here I have used the test set to determine values for the five

beta levels that will lead each model to produce the same number of tags per word on average. The

values are tuned on section 00 of theWSJ, using the C&C parser and models 1.0 to determine reference

ambiguities. These beta levels are then used for all tests, including Wikipedia.

For the models trained on Wikipedia data the change in ambiguity between theWSJ and Wikipedia is

considerably smaller than for the reference model. I chose not to re-tune on a sample of Wikipedia

sentences as this would mean I am effectively using two versions of each model during evaluation.

For accuracy three standard metrics are used, precision, recall and F-score. These are defined in terms

of:

• True Positives, instances that occur in the system output and the true output

3.2 METRICS 19

• False Positives, instances that occur in the system output,but not the true output

• True Negatives, instances that did not occur in the system output or the true output

• False Negatives, instances that did not occur in the system output, but did occur in the true

output

Precision =
TruePositive

TruePositive + FalsePositive
(3.1)

Recall =
TruePositive

TruePositive + FalseNegative
(3.2)

F − score =
2 ∗ Precision ∗ Recall

Precision + Recall
(3.3)

The F-scores given are calculated based on comparisons withgold standard labelled dependencies. The

category accuracies are for the first beta level only, and a word is considered correctly tagged if any of

the assigned categories is correct.

Parsing speeds were calculated using the parser’s internaltimers, measuring the overall parse time. As

the amount of training data scales up, so too does the time it takes to train models. One of the benefits of

the methods described in the following chapter is that they can train considerably faster, to demonstrate

these benefits I measured the amount of time spent training various models. All speed measurements

were performed using a 3GHz Intel Core 2 Duo CPU, and 4Gb ofRAM.

3.2.1 Significance Testing

Statistical significance testing was performed to determine if changes in model performance were mean-

ingful or not. The test applied reports whether two systems’responses are drawn from the same distri-

bution, where scores of0.05 and lower are considered significant (Chinchor, 1992).

The test works by taking two sets of output on the test set and randomly interchanging the entries ten

thousand times, counting whether the difference in a given metric between the two sets has increased. If

the two sets of responses are from different distributions,randomly mixing them should bring all of the

3.3 BASELINE PERFORMANCE 20

Data Word Accuracy (%) Sentence Accuracy (%)

WSJSection 00 96.49 51.23
WSJSection 02-21 97.96 67.61

WSJSection 23 96.90 55.01
Wikipedia 300 98.7 79.3

Wikipedia 1000 97.86 75.50

TABLE 3.1: Accuracy of the C&CPOStagger.

metrics closer together, as the two sets of results move to some intermediate distribution. If the two sets

are from the same distribution, then the change could be in either direction due to random variations. If

the change is observed to increase less than5% of the time the distributions are considered different2.

3.3 Baseline Performance

The baseline system is the C&C parser, revision13003. The supertagging model used was trained using

section 02-21 of CCGBank. It was estimated using theBFGSalgorithm (Broyden, 1970; Fletcher, 1970;

Goldfarb, 1970; Shanno, 1970) over500 iterations.

Before considering the performance of the baseline supertagger and parser it is worth considering the

C&C POStagger. ThePOStags assigned to the sentence form more than half of the features used by the

supertagger, and so their accuracy is crucial. In Table 3.1 we can see that the tag accuracy is quite high,

but nevertheless, a large proportion of sentences contain at least one error.

The default settings for the parser include five beta levels and corresponding tag dictionary cutoffs, as

shown in Table 3.2. The first set of ambiguity measurements shown here are the values that the rest of

our models are tuned to. Note the decrease in accuracy when tagging Wikipedia, despite an increase

in the number of categories assigned per word (and hence increased chances of supplying the correct

category). This is expected, as the supertagger was trainedon newspaper text, not Wikipedia. But it is

an important fact, since it demonstrates the decrease in performance when switching domains.

From Table 3.3 we can make several important observations. First, the influence ofPOS tagging accu-

racy is made absolutely clear by the drops in F-score of2.4 and1.7 percent, despite much smaller drops

2The actual script used is based on David Vadas’ Python implementation of
http://www.cis.upenn.edu/ dbikel/software.html#comparator

3Revision number refers to the svn repository at http://svn.ask.it.usyd.edu.au/candc/trunk

3.3 BASELINE PERFORMANCE 21

WSJ Wikipedia
Ambiguity Accuracy (%) Ambiguity Accuracy (%)

Beta Dict Cutoff (Cats/Word) Word Sentence (Cats/Word) Word Sentence

0.075 20 1.270 96.07 59.54 1.314 95.37 49.33
0.03 20 1.429 96.76 64.45 1.511 95.82 54.00
0.01 20 1.718 97.36 69.21 1.853 96.58 57.67

0.005 20 1.983 97.59 70.88 2.178 96.85 59.67
0.001 150 3.576 98.44 78.78 4.111 98.0 70.0

TABLE 3.2: Baseline supertagging accuracy usingPOStags produced by the C&CPOStagger.

in supertagging accuracy –1.5 and0.9 percent respectively. We can also observe the importance ofsu-

pertagging, as both tests in which gold standard supertags are provided have f-scores over90%. Clearly

improvements in thePOStagger and supertagger can translate into significant gainsin parser accuracy.

However, the most important observation for this work relates to the speed measurements. In the first

two rows of each section the parser and supertagger are interacting, with the supertagger supplying

limited tag sets and then gradually adding more tags if the parser cannot find a spanning analysis. Even

at the first level the number of tags assigned is around1.3, leaving the parser with many combinations

of tags to consider. When the number of tags per word is reduced to 1, in the bottom two rows of each

section, the system is considerably faster. This is becausethe parser has less work to do in the first place,

since there is only one combination of tags to work with, and since there are no other ambiguity levels

to consider it never has to try parsing a sentence multiple times before finding a derivation or giving up.

This clearly indicates that if we can reduce the number of tags per word that the supertagger supplies

we will obtain an increase in speed. The third row of each section represents an oracle supertagger that

can perfectly assign tags. The fourth row represents a supertagger that can second-guess the parser,

producing the set of tags it would have used anyway. One meansof working towards either of these

systems is to use more data when generating our supertaggingmodel. For the oracle supertagger we

would need more gold standard data, which is expensive and time consuming to generate. Meanwhile

for the supertagger that second-guesses the parser we need more data labelled with the parser’s output,

something we can easily generate by simply running the parser on large amounts of text. If we can use

this data to construct better models of what the parser wantswe could improve parsing speed by a factor

of between three and five.

3.4 SUMMARY 22

Supertag Accuracy Ambiguity F-score Speed
(%) (cats / word) (%) (sent / sec)

Data Single Multiple Eval Data 10k

WSJSection 00
Gold POStags 92.59 97.34 1.27 85.79 68 *
Auto POStags 91.14 96.07 1.27 83.41 68 48.54

Gold Supertags n/a n/a 1 96.81 250 *
Parser Supertags 92.07 n/a 1 83.41 230 290.2
Wiki Sent 300

Gold POStags 90.7 96.4 1.3 84.2 58 *
Auto POStags 89.8 95.4 1.3 82.5 58 46.31

Gold Supertags n/a n/a 1 91.0 300 *
Parser Supertags 92.0 n/a 1 82.6 280 253.2

TABLE 3.3: Baseline model performance.

3.4 Summary

The most important aspect of this chapter is the illustration of potential speed improvements. The

baseline system has an F-score of83.41 on theWSJ, and82.5 on Wikipedia, and can process48.54

sentences of theWSJ per second, and46.31 sentences of Wikipedia per second. If the supertagger

could cut down the tag sets it currently supplies to the one tag per word that the parser actually uses

in the final derivation, the system would process sentences more than five times faster. This clearly

demonstrates that successfully training the supertagger to provide what the parser wants will provide

significant efficiency improvements.

CHAPTER 4

Algorithms

A range of methods are used by supertaggers to choose the setsof tags to assign to each word. The two

main areas of variation are the set of features used, and the model that determines the implications of

those features. To enable the use of greater numbers of more sophisticated features supertaggers need

to become scalable. More features also mean more parametersto be optimised in our models, so our

optimisation algorithms need to be efficient. Tackling the challenge of algorithms that are more efficient,

but just as accurate, is the focus of this chapter.

4.1 Background

The C&C supertagger selects tags using a Hidden Markov Modeland the Viterbi algorithm, which are

described at the start of Chapter 2. One issue not dealt with in that section was how the transition and

emission probabilities are determined. These values are somehow defined by the language and domain

being considered, but are unknown to us. The methods described below provide a means of estimating

them.

4.1.1 Maximum Entropy Modeling

The general problem of how to use several different probability estimates to form one that captures

them all has been extensively studied by statisticians. Themaximum entropy model proposed by Jaynes

(1957) works by reformulating the estimates as constraintson the expectation, or average, of various

functions. Then, the probability distribution that satisfies all these constraints and has the highest entropy

is selected as the new model.

One of the first uses of maximum entropy modeling inNLP was by Lauet al.(1993) for language model-

ing. The parameters of the model were estimated using the Generalised Iterative Scaling method (GIS),

23

4.1 BACKGROUND 24

and the result was better than other state of the art methods at the time. Perhaps the most well known use

of these models inNLP is by Ratnaparkhi (1996) in a state of the artPOS tagger. The core idea of this

work was to make better use of contextual information, made possible by the flexibility of maximum

entropy modelling. ThePOS tagger produced had an accuracy of96.5% on a subset of the Wall Street

Journal section of the Penn Treebank, was flexible and only required a lexicon of possiblePOS tags for

each word1. Subsequently maximum entropy models have been incorporated into a range of systems,

such as the supertaggers described previously (Curran and Clark, 2003).

However, McCallum and Pereira (2001) highlighted what theycalled thelabel bias problemfor max-

imum entropy Markov models. The concept behind this problemis that decisions made in one state,

such as when assigning aPOStag to a word, are not influenced by the choices to follow. It has also been

shown that variants of iterative scaling perform quite poorly compared to general function optimisa-

tion algorithms such as the conjugate gradient method (Malouf, 2002). Despite these issues, maximum

entropy modeling has proved very effective for estimating weights for supertagging models.

4.1.2 Perceptrons

Perceptrons are another means of determining values that can be used as probabilities inHMMs. They

were first proposed as a model for human learning (Rosenblatt, 1958), based on investigation of the

structure of the brain and identification of its similarity to the structure of computers. Since then percep-

trons have been extensively studied as a simple machine learning algorithm for classification of linearly

separable data.

Recently, a variant of perceptrons was proposed by Freund and Schapire (1999) which stores all predic-

tion vectors considered during training, along with a countof the steps they were maintained for. This

count is then used as a weight for the vector, on the assumption that better vectors will last longer since

they misclassify fewer instances. These weighted vectors are then combined in a weighted majority vote

to create the final prediction vector. The result is a simple,easy to implement algorithm, which was

shown to be competitive with Support Vector Machines2 on a handwritten digit classification task.

Collins (2002) showed that these methods could be applied totasks inNLP, such asNP Chunking andPOS

tagging, with better performance than maximum entropy models. Specifically, using a voted perceptron

and trigram features for training, a Viterbi based system had an F-score of93.53% for NP Chunking and

1Without such a lexicon accuracy was reduced by0.12%
2An influential machine learning algorithm that been shown tobe very effective.

4.1 BACKGROUND 25

minτ̄
1
2

∑
r || M̄r + τrx̄

t ||22
subject to: (1)τr ≤ δr,yt for r = 1, ..., k

(2)
∑k

r=1 τr = 0

FIGURE 4.1: Equations for theMIRA update scheme.

an error rate of2.93% for POStagging, compared to92.65% and3.28% respectively for a similar system

trained with a maximum entropy model. Interestingly, the perceptron model also achieved its best result

after far fewer iterations, between six and forty, as opposed to the one hundred to two hundred required

for the maximum entropy model.

This perceptron method was applied to parsing by Collins andRoark (2004), using an incremental beam

search parser, which works by developing a set of linear constraints, one for each incorrect parse in the

training data. The parser performed similarly to another based on a generative model, with F-scores of

87.8% for data with gold standardPOS tags, and86.6% when tags were generated by a tagger. Similar

methods were recently applied to the C&C parser (Clark and Curran, 2007a), leading to performance

comparable to a log-linear model, but with much lower systemrequirements. Importantly, since the

perceptron based model is on-line, the final model differs slightly depending on the order of the training

data, but Clark and Curran (2007a) showed that this did not influence the performance of the parser.

4.1.3 Margin Infused Relaxed Algorithm

The Margin Infused Relaxed Algorithm (MIRA) also follows the standard multi-class perceptron algo-

rithm, but applies a different update method. The intentionis to make the smallest possible change

to the weights such that the correct class would be produced by a specified margin. As defined by

Crammer and Singer (2003), the update function adjusts the weights by a set of values satisfying:

Whereτ is the update to be made,̄M is the matrix of weights,̄xt is the value of the feature,k is the

number of classes, andδ is the Dirac delta function, equal to1 only whenr is the index of the correct

classification.

4.1.4 The C&C Parser and Supertagger

The C&C parser uses theCKY algorithm to construct the ‘chart’, an efficient representation of all pos-

sible analyses for a sentence. The most probable derivationis found using the Viterbi algorithm and

probabilities are calculated based on a conditional log-linear model.

4.2 IMPLEMENTATION 26

The supertagger uses a maximum entropy based model to assigna set of possible lexical categories to

each word in the sentence. The baseline system estimated themodel using eitherGIS or BFGS and ran

on only one processor.

If the supertagger assigns only one category to each words its accuracy is too low to be effectively

incorporated into a parser. By multitagging we can make the supertagger more accurate, but at the cost

of speed as the parser must consider larger sets of possible categories. The beta levels define cutoffs

for multitagging based on the probabilities from the maximum entropy model. If the parser is unable

to form a spanning analysis the beta level is decreased and the supertagger is rerun. The exact values

of these levels greatly influences parsing accuracy and speed. Accuracy is decreased in two ways: by

not providing enough categories at any level, leading to no spanning analysis; or by providing too many,

causing an ‘explosion’ in the chart.3

The initial feature set used for tagging included unigrams of POS tags and words and bigrams ofPOS

tags, all in a five word window surrounding the word being tagged. The weights for these features were

estimated by either Generalised Iterative Scaling (GIS) (Darroch and Ratcliff, 1972) or the Broyden-

Fletcher-Goldfarb–Shanno method (BFGS) (Broyden, 1970; Fletcher, 1970; Goldfarb, 1970; Shanno,

1970).

4.2 Implementation

4.2.1 Averaged Perceptron

The standard multi-class perceptron maintains a matrix of weights, containing a row for each attribute

and a column for each class. The weight in cell(c, r) indicates how strongly related the attributer and

the classc are. When all attributes are binary valued the class is assigned by ignoring all attributes that

do not occur and determining which column has the greatest sum. During training the class that column

corresponds to is compared to the true class and if it is correct no change is made. If the predicted

class is incorrect the weights are updated by subtracting1.0 from all weights for the predicted class and

adding1.0 to all weights for the true class. The averaged perceptron (AP) follows the same algorithm,

but returns the average of the weight matrix over the course of training, rather than its final state.

3An ‘explosion’ is when the chart exceeds a particular size, which for this work was set to300, 000 total categories (ie the
initial supertags and all the intermediate categories thatare part of the derivation).

4.3 RESULTS 27

The reason the average is more effective than the final value is that the perceptron only converges for

linearly separable data, which our data is not. This means that the perceptron will jump between states,

optimising for the most recent set of observations, potentially at the cost of accuracy on a large set

of previous observations. Therefore the final state of the perceptron is highly dependent on the most

recently observed training instances. By taking the average of all states we will be creating a state that

is most similar to the states that are most often correct.

4.2.2 Margin Infused Relaxed Algorithm

We have applied a slight variation of theMIRA update method that can be expressed as follows4:

min(max,
margin+

P

f pw−tw

|features|(1+ 1

n
above

)
)

Wheremargin is the absolute difference that will be created between the true classification and those

that previously ranked above it, the sum is over all features, pw andtw are the weights associated with

the featuref for the predicted and true classes respectively,|features| is the number of active features,

andnabove is the number of categories that had higher sums than the correct category. The constant,

max, was introduced to prevent a single event causing extremelylarge changes to the model.

We also made it possible to enable shuffling between iterations of the algorithm. The idea for this was

to prevent the model from overfitting to the particular orderof training instances.

4.3 Results

Using larger datasets for training can take a prohibitive amount of time for theGIS andBFGSalgorithms.

However, any time benefits provided by other algorithms needto be balanced with their influence on

accuracy. Table 4.1 shows how the accuracy of the algorithmsdescribed previously compare with the

previous estimation methods.

Tagging and parsing accuracy are both similar, and the smalldecrease that does occur in F-score is not

statistically significant. The speed of the parser using these models is also similar, with the averaged

perceptron outperforming the previous methods by a considerable margin.

4The derivation of this alternative form can be found here:
http://www-inst.eecs.berkeley.edu/ cs188/sp09/projects/classification/classification.html

4.4 SUMMARY 28

Cat Accuracy (%) F-score Speed
Algorithm Single Multiple (%) (sent / sec)

GIS 91.49 96.32 83.82 51.7
BFGS 91.38 96.29 83.73 52.1

AP 91.41 95.65 83.74 59.2
MIRA 91.42 96.19 83.69 50.6

TABLE 4.1: Performance comparison of model estimation algorithmon theWSJ.

Data Training Time (sec)
(sentences) GIS BFGS AP MIRA

40,000 7,200 6,300 76 96
80,000 14,000 13,000 160 200

440,000 * * 950 1,200

TABLE 4.2: Comparison of training time for several model estimation algorithms.

The time saving provided by the perceptron based algorithmsis clearly illustrated by Table 4.2. The new

algorithms are able to train on eleven times as much data as the previous methods, in a sixth of the time.

The final row is included to demonstrate that the time taken continues to scale linearly with respect to

the amount of training data. ComparableGIS andBFGSmodels were trained on440, 000 sentences, but

a different computer was used, making direct comparison inappropriate.

Further comparisons of the algorithms can be found in Chapter 5. They are not included here as the

experiments rely upon the adaptive training methods still to be described.

4.4 Summary

By implementing two perceptron based algorithms to estimate the parameters for our maximum entropy

models I have been able to utilise orders of magnitude more data, at no extra cost in time. Importantly,

even when using only the data used previously, the models produced by this training process can be just

as accurate as models estimated byGIS or BFGS. These developments provide the architecture needed

for rapid adaptive training on large amounts of training data.

CHAPTER 5

Adaptation

Once the extra data had been created and the new estimation algorithms were implemented it was possi-

ble to begin scaling up the amount of training data. I describe this training process as ‘adaptive training’

as the extra data was annotated by the baseline system, and that data is now being used to retrain an ear-

lier stage in the system, the supertagger. To support the extra training data I also needed to parallelise the

training process, and some investigation was performed to determine the scalability of the new system.

In this chapter two domains are explored, newspaper text andweb text. The first is the standard domain

for parser evaluation and is the domain the baseline system was trained on, and the second has recently

become a particularly popular resource for manyNLP tasks. Also, by considering two domains and

measuring cross-corpus performance I was able to demonstrate that domain adaptation is occurring. This

chapter also contains further comparison of the various model estimation algorithms to demonstrate that

the averaged perceptron andMIRA continue to produce comparable results as the amount of datascales

up.

5.1 Background

5.1.1 Semi-supervised Training

Most statistical parsers and supertaggers share a similar training method in which a large collection of

sentences with gold-standard annotations are used to construct a model. This method has the disad-

vantage that it is expensive to apply to novel domains and other natural languages. An alternative is a

form of semi-supervised training in which multiple models are trained on a smaller set and then reliable

output from one model on unlabeled data is used as further training data for the other models.

One of the first demonstrations of semi-supervised trainingin NLP was for word sense disambiguation

(Yarowsky, 1995), in which a model was proposed that considered collocations in documents to classify

29

5.1 BACKGROUND 30

examples of words into sense categories. Initially a small set of collocations for the word being consid-

ered were identified and labeled with a sense, and then all instances of those collocations in the corpus

were labeled with the same sense. The system then labeled as much of the corpus as possible based on

the context of words already labeled. By repeating this process all instances in the corpus were labeled,

with an accuracy of more than96%, clearly demonstrating the feasibility of semi-supervised training.

This was followed by Blum and Mitchell (1998), who applied co-training to classification of web pages.

Two naive Bayes classifiers were used, one trained on the words in hyperlinks, the other trained on the

words in web pages. Initially both were trained using a set oflabeled examples. Then a series of iter-

ations were performed in which both classifiers considered aset of unlabeled examples and added the

ones they could most confidently label to the training set. For evaluation the classifiers were compared

to a baseline classifier that always returns ‘negative’1 and another pair of naive Bayes classifiers trained

on only the initial training set. Both of the co-trained classifiers performed better, in particular the page

based classifier, which more than halved its error rate. Interestingly in one series of iterations the page

based classifier became worse than the baseline during the first ten iterations, but was then able to im-

prove during the next thirty iterations, more than halving its initial error rate. This clearly demonstrates

that once enough iterations have been completed, co-training provides a great improvement, success-

fully utilising unlabeled examples. Blum and Mitchell (1998) also developed a formalism to describe

the learning process in terms of a bipartite graph. Two sets of vertices are defined by different views of

the documents; in the test described one set was the words in hyperlinks and the other was the words

in pages. Examples from the data set form edges in the graph, indicating that the two features that are

linked should indicate the same label. Once enough edges have been added, the graph will consist of

two components, corresponding to the two labels.

Algorithms for supervised learning have been developed, such as AdaBoost (Freund and Schapire,

1997), which combine the results of several weak learning algorithms to produce improved results.

Collins and Singer (1999) proposed a co-training variant ofAdaBoost, CoBoost, and applied it to a

document classification task. Unlike previous work, in which all of the models would change in each

iteration, Collins and Singer (1999) alternated between models, using one to train the other and vice

versa. Starting with a small set of seven seed rules, the two classifiers gradually developed by adding

rules based on new classifications of previously unlabeled documents. By only adding the most definite

new rules in each iteration the system was able to outperforma Yarowsky (1995) style implementation

by 10%.

1
78% of the pages had a correct classification of negative.

5.1 BACKGROUND 31

One disadvantage of the approaches to co-training described so far is that they assumed that

two redundant views of the data existed that could be used individually for perfect classification.

Goldman and Zhou (2000) considered using models that did notguarantee this property, and instead

required that the models divided the examples into a set of equivalence classes. In each iteration the

system determined which of the recently labeled examples topass from one model to the other by hy-

pothesis testing on confidence intervals, the amount of extra labeled data that would be obtained, and a

conservative estimate of the classification noise rate. On the sample task described in the paper, cate-

gorical classification of UCI datasets, co-training using the ID3 and HOODG algorithms led to an error

rate more than4% lower than either algorithm alone. This is an improvement ofmore than25% over

either algorithm alone, and15.6% over an algorithm that omnisciently picks the better resultfrom the

two algorithms. This last result clearly indicates that addition of extra training data through co-training

has led to more accurate models. Importantly, the original source of this training data was unlabeled

data, which is available in large quantities.

5.1.2 Semi-supervised Training for Parsers

Semi-supervised training was first considered for parsing by Sarkar (2001), who applied co-training to

a supertagger and parser forLTAG. Unlike previous attempts to apply unsupervised training to parsing,

the evaluation was performed using sentences in the Penn Treebank2. In each iteration the sentences that

were parsed with greatest certainty were added to the training set. A major difference between parsing

and the previous co-training experiments described is thatthe set of ‘classes’ that the parser can place

sentences in is arbitrarily large, and while the set used by the supertagger is limited by a lexicon, it is still

orders of magnitude greater than the sets previously described. Despite these challenges, the co-trained

supertagger and parser improved by more than7% in both precision and recall over the baseline parser

trained by supervised methods.

Another form of semi-supervised training is self-training, in which a single system is trained on its own

output on unlabeled data. Usually this has been found to provide either only slightly positive or sig-

nificantly negative results, presumably because errors in the original model are amplified in subsequent

models (Charniak, 1997). However, McCloskyet al. (2006) demonstrated that a variant of self-training

similar to co-training can provide improvements. Rather than using two completely independent systems

that are retrained in each iteration, a parser and reranker were used and only the parser was retrained.

The purpose of the reranker was to take the top fifty parses produced by the parser and rerank them

2Previously successful attempts had generally used shorter, less complex sentences.

5.1 BACKGROUND 32

according to a range of linguistic features. Note that this does differ from self-training approaches, since

the parser’s output is modified independently before being reused, but it is not quite the same as co-

training since only one of the models is being changed in eachstep. Using these methods the reranking

parser was able to improve its F-score from90.3% to 92.1% on section 22 of the Wall Street Journal

corpus. These results are important as the core idea of theirapproach is the same as the idea being

applied here, except that instead of using the output of a parser and reranker to retrain the parser, I am

using the output of a supertagger and parser to retrain the supertagger.

5.1.3 Semi-supervised Training for theCCG Supertagger

There has been considerable investigation of the features used by the models in supertaggers, but how

they are trained has not yet been as thoroughly addressed. Both of these areas are critical to supertagger

performance, which has been extensively demonstrated to have a great influence on subsequent process-

ing. One method that has been successfully applied elsewhere to improve training when only limited

labelled data is available is semi-supervised training, but it has not yet been applied to aCCG supertag-

ger. One of the benefits and challenges of semi-supervised training is the large quantity of extra training

data it provides. This is a benefit because it makes training on domains with small amounts of annotated

data feasible, but is also a challenge because it creates a demand for scalable high performance systems.

Another idea that has not been addressed is to consider usingsemi-supervised training of a supertagger

to adapt it to a particular parser. If we aim only to improve speed, while maintaining accuracy, then

one method of doing so is to decrease the number of tags supplied, while still including the one that the

parser was going to use anyway. This should lead to the same accuracy, as the parser uses the same tag

it would have if the model assigned more tags. However, the parser is faster as it has fewer derivations

to consider.

Of course it would be ideal to improve the confidence of our model using vast amounts of gold stan-

dard annotated data, reducing ambiguity while still including the correct tag. This would give a speed

improvement, as there are fewer derivations for the parser to consider, and probably an accuracy im-

provement too, as the tagging is more accurate. However, while we do not have access to vast amounts

of gold standard annotated data, we can easily generate vastamounts of data labelled with the parsers

final derivations. This data can then be used to retrain the supertagger to give the speed boost described

in the previous paragraph.

5.2 IMPLEMENTATION 33

To enable the use of large amounts of data for semi-supervised training the supertagger needs to be

scalable. To achieve this aim I needed to parallelise the training process.

5.1.4 Message Passing Interface

The Message Passing Interface (MPI) is a message passing application programmer interface that was

created to assist programmers in developing code that will be portable while maintaining high perfor-

mance (Sniret al., 1995). The actual definition ofMPI is language independent, and since its creation it

has been implemented across a range of platforms and languages including C (Groppet al., 1996) and

Python (Miller, 2002).

Despite being used extensively elsewhere, very little workappears in the literature forNLP that uses

MPI. One of the first examples is by Clark and Curran (2003), whereit was used to parallelise theGIS

parameter estimation algorithm to allow a larger dataset tobe held in memory (30GB of RAM). This

work was also included in the outline of a high performance infrastructure forNLP (Curran, 2003), which

described usingMPI to provide scalability as corpora grow in size.

Recently other groups have started to useMPI, such as Kazama and Torisawa (2008), who parallelised

a clustering algorithm for constructing a gazetteer for named entity recognition. This made it feasible

to perform clustering with a large vocabulary and a computationally expensive algorithm. As well as

MPI, there has been some use of other platforms for parallel computing in NLP, such as the use of Grid

computing in Hugheset al. (2004) for creating indices for information retrieval tasks.

The low usage ofMPI in the field could be the result of the limited size of annotated corpora available

for training. However, as was shown earlier, recent developments in semi-supervised training using a

large amount of unannotated data are creating a need for efficient, parallelised implementations of tools

in NLP.

5.2 Implementation

To enable the use of larger models I increased the amount of accessibleRAM and processing power

by parallelising the supertagger training usingMPI and the MapReduce libraryMRMPI. The stages

in the training process for the system can be seen in Figure 5.1. Parallelising this process involved

5.2 IMPLEMENTATION 34

FIGURE 5.1: Single thread model creation.

FIGURE 5.2: Parallel model creation.

modifying the entire process, which can be divided into two primary stages, feature extraction and

weight estimation.

5.2.1 Parallelising Feature Extraction

The first stage of supertagging is feature extraction and aggregation. Extraction is trivial to parallelise by

dividing the contexts amongst a set of computers. Aggregation is necessary to determine which features

should be excluded as being too rare and so I usedMRMPI to combine frequency counts and update the

values for relevant nodes3. This process is summarised in the first half of Figure 5.2, where the data is

divided initially, and then there is communication betweennodes during feature extraction so that the

sets of contexts and features created are correct.

3The parallelised form of feature extraction was implemented by pair programming with Jessika Rosener during the JHU
CLSP Workshop 2009

5.2 IMPLEMENTATION 35

FIGURE 5.3: Information flow for parallel estimation of maximum entropy models and
perceptron models

5.2.2 Parallelising Feature Weight Estimation

For weight estimation the maximum entropy methods were ‘embarrassingly parallel’, as the main pro-

cessing is the calculation of sums of weights across all training instances. The parallel version of these

methods differ in three main ways. First, the instances are divided between a set of computers. Second,

sums are calculated across all computers to determine necessary changes to weights. And third, after

each update the changes are distributed to all nodes.

The perceptron methods adjust the weights based on each training instance individually and so the

parallelisation above was not applicable. The training instances are still distributed across a cluster of

computers, but during weight estimation only one computer is working at a time, adjusting the weights

based on all of its instances before passing the updated weights to the next node. This saves time by

removing the cost of loading the training instances from hard disk when there are too many to fit inRAM.

The difference in communication usage by the two methods is captured by Figure 5.3. Clearly the

maximum entropy methods involve more network usage, but unlike the perceptron methods, every node

is involved in the calculations, leading to considerable time savings as the number of nodes scales up.

5.3 RESULTS 36

Time (1000s of seconds)
1 process per node All on one node

Data 1 2 3 4 1 2 3 4

40k 2.9 1.8 1.4 1.2 2.9 1.8 1.4 1.2
80k 6.9 4.0 3.0 2.5 6.9 4.0 3.0 2.5

440k 38 21 15 12 38 21 15 12
2000k 170 94 66 52 170 95 67 53
4000k * 190 130 110 * * * *

TABLE 5.1: Small scale scalability tests of the parallelGIS implementation.

5.3 Results

5.3.1 Scalability

Since the purpose of the parallel implementation was to improve the scalability of the training process

a series of tests were performed with different numbers of processors and amounts of training data to

confirm that the changes were effective. All of the results inthis section were collected by training

models using newspaper text andGIS, with the exception of theMIRA estimated models in Table 5.3.

The system that was used for training the models was the Silica computing cluster, which is made up of

seventy-four computer nodes. Each node contains eight cores, four each from two Intel Xeon X5355s,

clocked at 2.66GHz, as well as sixteen gigabytes ofRAM.

While it was important to perform the tests summarised in this section, it would have been a waste of

resources to perform more tests than necessary. As a result,not all of the cells in the tables contain

results. Any cell containing a ‘–’ was not tested for this reason. Cells containing a ‘*’ indicate tests that

could not be run because insufficientRAM was available.

The first set of tests were small scale, to see at what point a single node has insufficientRAM to support

all of the data, and how whether inter-node network latency was an issue. Table 5.1 clearly demonstrates

that the parallel implementation is providing a significantimprovement. The left half of the table de-

scribes tests where one MPI node was running on each compute node, though a request was made for

all eight cores to ensure full access to theRAM and no interference by other users’ processes. The right

hand side describes tests where all of theMPI nodes were on a single compute node. There is little to no

difference between the two sides, which is good, as it means the distribution ofMPI instances across the

cluster can be of any form, as long as enoughRAM is available.

5.3 RESULTS 37

Time (1000s of seconds)
Data 1 2 4 8 16 32 64

40k 2.9 1.8 1.2 0.98 0.83 0.81 0.78
80k 6.9 4.0 2.5 2.0 1.4 1.2 1.2

440k 38 21 12 8.0 6.1 4.6 3.6
2000k 170 94 52 – – – –
4000k * 190 110 – – – –

TABLE 5.2: Large scale scalability tests of the parallelGIS implementation.

Time (1000s of seconds)
GIS MIRA

Data 1 2 4 8 1 2 4 8

40k 2.9 1.8 1.2 0.98 0.12 0.12 0.11 0.12
80k 6.9 4.0 2.5 2.0 0.27 0.26 0.25 0.26

440k 38 21 12 8.0 2.0 1.8 1.8 1.8
2000k 170 94 52 – 9.7 8.8 8.8 –
4000k * 190 110 – * 20 – –

TABLE 5.3: Comparison of training time for parallel implementations ofGIS andMIRA .

Also, the results show significant improvements in trainingtime. The relationship between number of

instances and amount of time is not quite directly inverselyproportional, but doubling the number of

instances does lead to at least a43% decrease in time for the larger data sets.

Once I had established that inter-node communication wouldnot be a major issue I performed the larger

scale tests summarised in Table 5.2. As the number of instances scales up, we experience diminishing

returns, but as the amount of data scales up those returns improve. With sixty-four instances we can

train on eleven times as much data as a single instance and take less than25% longer.

As described in the previous section, the parallel implementations differ as the perceptron algorithms

modify the weight vector continuously, and so only a single processor can work at once. However, the

parallel implementation is still important, as it allows access to far greater amounts ofRAM. In Table 5.3

we can see that increasing the number of instances does not improve training time forMIRA , but the

algorithm is so fast anyway, that it far outpacesGIS at these scales.

Based on these tests I came up with different strategies for running large scale training experiments:

5.3 RESULTS 38

Supertag Accuracy F-score Speed
(%) (%) (sent / sec)

Data Single Multiple

WSJ 91.49 96.32 83.82 51.7
NANC

40k 90.81 95.57 83.02 59.1
400k 91.57 96.09 83.55 57.2

2000k 91.71 96.35 83.85 56.4
4000k 91.70 96.39 83.97 55.7
5349k 91.73 96.39 84.03 55.7
WSJ+ NANC

40k 91.62 96.36 84.05 56.9
400k 91.87 96.46 83.98 56.5

2000k 91.98 96.64 84.22 55.6
4000k 91.98 96.68 84.32 55.0
5349k 92.02 96.67 84.32 55.1

TABLE 5.4: Performance of models trained usingNANC data.

• GIS andBFGS, as many instances as possible, without using upRAM (extra usage due to process

overheads4)

• AP andMIRA , one instance per node, using as few nodes as possible

5.3.2 North American News Corpus

Before considering adaptation to other domains it was important to investigate the potential for im-

provement on newspaper text. Table 5.4 presents the resultsof adaptive training experiments on the

North American News Corpus. All of these models were estimated usingGIS and are evaluated here on

Section 00 of theWSJ.

The most important result here is the clear improvement in speed from51.7 to over55 sentences per

second. These improvements are far smaller than those demonstrated in Chapter 3. Presumably to attain

the speeds from Table 3.3 a reduction in ambiguity will be required. The relationship between ambiguity,

accuracy and speed is explored further in the following chapter.

Table 5.4 also demonstrates that adaptive training does notdecrease accuracy. In fact, slight improve-

ments in tagging accuracy and parsing F-score are observed.The best result is an improvement of0.5%,

4These overheads are in fact the reason that no tests were performed with 8 instances on a single node for two million
sentences.

5.3 RESULTS 39

Supertag Accuracy Ambiguity F-score Speed
(%) (cats / word) (%) (sent / sec)

Data Single Multiple

WSJ 90.05 95.34 1.32 82.5 46.8
Wikipedia

40k 90.56 94.79 1.26 82.1 61.3
400k 90.89 95.71 1.27 82.7 61.3

2000k 91.13 95.80 1.28 82.7 57.3
4000k 91.07 95.82 1.28 83.0 59.9
8000k 91.16 95.80 1.28 83.3 60.5
WSJ+ Wikipedia

40k 90.64 95.37 1.29 82.6 58.9
400k 91.02 95.68 1.28 82.5 59.7

2000k 91.23 95.73 1.28 82.4 59.7
4000k 91.11 95.83 1.28 82.7 59.1
8000k 91.16 95.82 1.28 82.9 59.8

TABLE 5.5: Performance of models trained using Wikipedia data.

which was made by the model trained on almost all of theWSJ data in theNANC and is statistically

significant.

As expected, the addition of gold standard training data leads to a considerable improvement in accu-

racy. Interestingly, even when tagging accuracy is similar, such as for the model trained on2, 000, 000

sentences from theNANC and the model trained on40, 000 sentences plus section 02-21 of theWSJ, the

model trained with gold standard data performs better.

5.3.3 Wikipedia

One of the primary aims of this work was to use supertagger adaptation to improving parsing per-

formance on domains other than newspaper text. To improve performance on web text I trained new

supertagging models using automatically labelled Wikipedia text, the results of which can be seen in

Table 5.5. The improvements here are even greater than for the previous tests, with increases in parsing

speed from46.8 to around60 sentences a second, with no loss in accuracy.

Interestingly, as more data is used parsing speed does not improve, but accuracy does considerably. The

best performing model, trained using eight million wikipedia sentences, improves by0.8%. Importantly,

this change was found to be statistically significant using the test described in Chapter 3.

5.3 RESULTS 40

Supertag Accuracy (%)
WSJ Wikipedia

Single Multiple Single Multiple
Training Corpus no gold withWSJ no gold withWSJ no gold withWSJ no gold withWSJ

WSJ n/a 91.49 n/a 96.32 n/a 90.05 n/a 95.34
40k NANC 90.81 91.62 95.57 96.36 90.20 90.53 95.10 95.28

400kNANC 91.57 91.87 96.09 96.46 90.47 90.58 95.74 95.65
2000kNANC 91.71 91.98 96.35 96.64 90.73 90.74 96.13 96.01
4000kNANC 91.70 91.98 96.39 96.68 91.04 91.04 96.16 96.19
5349kNANC 91.73 92.02 96.39 96.67 90.93 91.04 96.25 96.21

40k Wiki 88.75 91.55 93.90 96.31 90.56 90.64 94.79 95.37
400k Wiki 89.89 91.34 95.07 96.22 90.89 91.02 95.71 95.68

2000k Wiki 90.42 91.34 95.54 96.27 91.13 91.23 95.80 95.73
4000k Wiki 90.52 91.33 95.64 96.29 91.07 91.11 95.82 95.83
8000k Wiki 90.66 91.36 95.75 96.29 91.16 91.16 95.80 95.82

TABLE 5.6: The effect of adaptive training on supertagging accuracy.

In the previous section the same dataset was used to tune the beta levels as was used for the evaluation

– Section 00 of theWSJ. Here I also tuned on Section 00, but tested on the Wikipedia–300 dataset.

Interestingly, this causes a significant difference in ambiguity, leading the supertagger to assign fewer

tags per word. This makes sense, since these models were trained on the Wikipedia domain and therefore

should be more confident when tagging Wikipedia text. However, decreasing ambiguity leads to a

decrease in supertagging accuracy, and lower supertaggingaccuracy generally leads to lower parsing

accuracy. This makes the improvements in tagging accuracy and parsing F-score even more impressive.

5.3.4 Cross-Corpus Evaluation

To determine whether the supertagger is actually adapting to the new domain or simply improving

overall, in this section I present cross-corpus comparisonof the models in the previous two sections.

Each table considers a different aspect of performance, andis structured with the cross-corpus results in

the top right and bottom left quadrants. To demonstrate the influence of the addition of gold standard data

each row actually contains the results for two models, one with only the data in the ‘Training Corpus’

column, and another with the addition of the gold standardWSJdata.

5.3 RESULTS 41

5.3.4.1 Supertagging Accuracy

The first performance measure to consider is also the most difficult to interpret – supertagging accuracy,

shown in Table 5.6. If all of our data was gold standard the results of this section would be straightfor-

ward to interpret, as the more effectively a model is learning from the data, the higher its accuracy should

be. For automatically labelled data the situation is more complicated as we are not in fact developing

models to produce the correct answer, but rather to produce the answer the parser would choose given

all the options it was previously.

For theWSJ section of the table the results are entirely as expected. The Wikipedia trained models

consistently perform worse, the addition of gold standardWSJ data always boosts performance, and

training on more of theNANC data leads to improved performance. Importantly, adding almost any

amount of Wikipedia data decreases performance in comparison to training on theWSJalone, which fits

with the theory that our model is adapting to the Wikipedia domain.

The results for Wikipedia are where the effect of adaptive training become more difficult to interpret.

The ambiguity of each beta level was tuned to be the same for all models for theWSJ, but this does not

translate to the same ambiguity for Wikipedia. TheWSJ model and all theNANC models had tagging

ambiguities of between1.32 and1.33 for Wikipedia, while the Wikipedia trained models had ambi-

guities between1.26 and1.29, as shown in Table 5.5. This is the most probable explanationfor the

slightly poorer performance of the Wikipedia trained models when multitagging. However, the single

tagging results, which sidestep the ambiguity issue, clearly indicate that the Wikipedia trained models

are performing better. Again, this demonstrates that the supertagger is successfully adapting to the new

domain. Additionally, theNANC trained models perform worse on Wikipedia than they do on theWSJ,

which fits with the adaptation hypothesis.

5.3.4.2 Parsing Accuracy

The next metric to consider is parsing accuracy, shown in Table 5.7. While the primary aim of this work

is to improve parsing speed, it would not be a worthwhile improvement if it came at the cost of parsing

accuracy. Additionally, it was expected that training on extra data from one domain should improve

performance on that domain in particular, and not another.

The results in Table 5.7 clearly demonstrate that performance has not decreased and that the improve-

ments are domain specific. For theWSJ the most accurate models are those trained on theNANC, while

5.3 RESULTS 42

F-score (%)
WSJ Wikipedia

Training Corpus no gold withWSJ no gold withWSJ

WSJ n/a 83.82 n/a 82.5
40k NANC 83.02 84.05 81.5 81.8

400kNANC 83.55 83.98 81.2 81.4
2000kNANC 83.85 84.22 81.6 81.6
4000kNANC 83.97 84.32 81.9 81.9
5349kNANC 84.03 84.32 82.0 81.8

40k Wiki 79.83 83.90 82.1 82.6
400k Wiki 81.75 83.69 82.7 82.5

2000k Wiki 82.57 83.70 82.7 82.4
4000k Wiki 82.82 83.77 83.0 82.7
8000k Wiki 82.97 83.75 83.3 82.9

TABLE 5.7: The effect of adaptive training on parsing accuracy.

almost all of the Wikipedia trained models perform worse than the baseline. This suggests that the Wiki-

pedia trained models have adapted and no longer model the newspaper text domain as effectively. For

Wikipedia we observe the opposite, with almost all Wikipedia trained models performing better than the

baseline, and allNANC trained models performing worse.

The results for the Wikipedia trained models are particularly impressive, as in Table 5.6 we saw that the

decrease in ambiguity was leading to lower tagging performance. However, these seemingly contradic-

tory results make sense when we consider the fact that the models are being trained on parser output.

We would expect that adaptive training of the models would make them produce the tag sets that the

parser chooses. This could lead to a decrease in tagging performance, since the model is not learning to

produce the gold standard. However, it should not lead to a decrease in parsing performance, since the

tagger is now even more likely to provide the tag that the parser would have used anyway.

Interestingly, performance continues to improve as more training data is used, right up to the largest

models, though we do observe diminishing returns.

5.3.4.3 Parsing Speed

The final metric, but most important for this work, is speed. Table 5.8 clearly shows that the models are

adapting to the domain they are trained on. In fact, some of the models perform even worse than the

baseline in the cross-corpus tests.

5.3 RESULTS 43

Speed (sent / sec)
WSJ Wikipedia

Training Corpus no gold withWSJ no gold withWSJ

WSJ n/a 51.7 n/a 46.8
40k NANC 59.1 56.9 48.5 45.9

400kNANC 57.2 56.5 47.7 47.5
2000kNANC 56.4 55.6 49.2 49.7
4000kNANC 55.7 55.0 48.6 48.6
5349kNANC 55.7 55.1 49.7 48.9

40k Wiki 48.1 54.3 61.3 58.9
400k Wiki 46.9 50.6 61.3 59.7

2000k Wiki 45.0 47.9 57.3 59.7
4000k Wiki 44.9 45.6 59.9 59.1
8000k Wiki 46.1 47.5 60.5 59.8

TABLE 5.8: The effect of adaptive training on parsing speed.

It may seem surprising that speed improvements do not occur as progressively more data is used, but

this is probably a result of the tuning of beta levels. By tuning to match the average number of tags

supplied we are effectively tuning the amount of work the parser will have to do as it works out which

combination of tags leads to the best derivation. This issuewill be further explored in the following

chapter.

Of course, this argument raises the question of why any improvement is observed. The reason appears

to be that more sentences are parsed earlier, as shown in Table 5.9. Parsing a sentence at an earlier level

is a serious advantage, as going to the next level would mean repeating the entire parsing process, and

doing so with more possible derivations, as at the lower levels the supertagger is supplying more tags.

5.3.5 Algorithm Scalability

In the previous chapter we saw that the perceptron based algorithms could train on orders of magnitude

more data, but given the same amount of data as the previous methods, they produced slightly worse

results. Here I investigate their performance over a wider range of datasets.

The first section of Table 5.10 is exactly the same as in the previous chapter, and the other sections

display similar trends. The perceptron algorithms performworse, but not by a great amount. Importantly,

once training on more than just theWSJ, MIRA andAP both perform better than the baseline for parsing

accuracy in all cases.

5.3 RESULTS 44

Number of sentences parsed at each level
Without WSJ02-21 WithWSJ02-21

WSJ Wikipedia WSJ Wikipedia
Data 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

WSJ 1787 41 34 13 19 278 8 8 3 3 1787 41 34 13 19 278 8 8 3 3
NANC

40k 1829 25 14 7 21 287 5 1 3 3 1832 23 16 7 20 279 8 4 3 4
400k 1857 17 13 3 3 286 8 2 0 0 1852 19 12 5 6 287 7 3 0 0

2000k 1867 10 9 3 3 290 5 2 0 0 1869 9 8 2 4 289 6 2 0 0
4000k 1871 11 5 4 4 293 5 1 0 1 1874 8 5 4 4 291 6 2 1 0
5349k 1872 12 5 3 3 292 4 1 1 1 1874 9 5 4 3 290 5 1 2 0
Wikipedia

40k 1827 29 20 8 16 286 6 4 2 2 1831 33 19 4 10 282 6 7 0 5
400k 1855 15 14 1 11 292 3 3 0 1 1853 24 12 4 4 291 4 1 2 1

2000k 1870 11 9 4 1 292 3 4 0 0 1871 14 8 2 1 292 5 2 0 0
4000k 1875 9 7 1 4 293 4 2 0 1 1872 14 6 1 3 293 4 1 0 1
8000k 1875 10 8 3 3 292 5 2 0 1 1878 10 5 3 3 292 5 1 0 1

TABLE 5.9: Number of sentences parsed at each level for a range of models.

One issue faced by the perceptron based methods is that they do not actually produce probability distri-

butions. This is solved by normalising, but this was not possible for AP trained models that used more

than400, 000 sentences as the values being used became too large.5

The same trends can be seen for Wikipedia in Table 5.11. The perceptron algorithms consistently per-

form slightly worse, but in this case the accuracy of even thelargest model is still worse than the baseline.

However, as was observed in Table 5.7, evenGIS does not show noticeable improvements in accuracy

when trained on more Wikipedia data. Also, all of these models were trained using combinations of

Wikipedia and the gold standardWSJdata, while the mos accurateGIS models were those trained using

Wikipedia alone. This decision was made mainly to make theseresults more comparable to those in the

previous table.

5The normalisation process involves considering exponentials of the weights, which quickly overflow as the values in-
crease.

5.3 RESULTS 45

Supertag Accuracy F-score Speed
(%) (%) (sent / sec)

Algorithm Single Multiple

WSJ

GIS 91.49 96.32 83.82 51.7
BFGS 91.38 96.29 83.73 52.1

AP 91.41 95.65 83.74 59.2
MIRA 91.42 96.19 83.69 50.6

WSJ+ 40k NANC

GIS 91.62 96.36 84.05 56.9
BFGS 91.51 96.24 84.14 57.3

AP 91.42 95.77 84.04 64.0
MIRA 91.61 96.25 83.93 56.6

WSJ+ 400kNANC

GIS 91.87 96.46 83.98 56.5
BFGS 91.46 96.12 83.89 60.4

AP 91.68 96.08 83.91 62.9
MIRA 91.78 96.39 83.92 57.5

WSJ+ 2,000kNANC

GIS 91.98 96.64 84.22 55.6
BFGS 91.95 96.52 84.31 57.8
MIRA 91.83 96.60 84.11 56.9

WSJ+ 4,000kNANC

GIS 91.98 96.68 84.32 55.0
BFGS 91.97 96.55 84.19 57.2
MIRA 91.93 96.62 84.10 55.0

WSJ+ 5,348,997NANC

GIS 92.02 96.67 84.32 55.1
MIRA 91.93 96.58 84.15 54.7

TABLE 5.10: Comparison ofWSJperformance for various model estimation algorithms.

5.3 RESULTS 46

Supertag Accuracy Ambiguity F-score Speed
(%) (cats / word) (%) (sent / sec)

Algorithm Single Multiple

WSJ

GIS 90.05 95.34 1.32 82.5 46.8
BFGS 89.89 95.33 1.31 82.6 48.5

AP 89.28 94.49 1.35 81.7 57.1
MIRA 89.53 95.19 1.33 81.5 47.9

WSJ+ 40k Wikipedia
GIS 90.64 95.37 1.29 82.6 58.9

BFGS 90.52 95.24 1.29 81.3 60.7
AP 90.32 94.61 1.28 81.7 69.7

MIRA 90.28 95.28 1.30 81.5 58.6
WSJ+ 400k Wikipedia

GIS 91.02 95.68 1.28 82.5 59.7
BFGS 90.67 95.22 1.29 81.3 58.6

AP 90.71 95.16 1.27 82.2 69.4
MIRA 90.89 95.58 1.28 82.2 61.4

WSJ+ 2,000k Wikipedia
GIS 91.23 95.73 1.28 82.4 59.7

BFGS 90.79 95.73 1.29 82.2 60.1
MIRA 90.76 95.62 1.28 81.9 59.3

WSJ+ 4,000k Wikipedia
GIS 91.11 95.83 1.28 82.7 59.1

BFGS 91.01 95.85 1.28 82.2 64.3
MIRA 90.93 95.73 1.29 82.4 58.7

WSJ+ 8,000k Wikipedia
GIS 91.16 95.82 1.28 82.9 59.8

MIRA 91.16 95.77 1.29 82.0 45.6
WSJ+ 16,000k Wikipedia

MIRA 91.08 95.92 1.29 81.7 56.5
WSJ+ 26,000k Wikipedia

MIRA 91.05 95.95 1.29 81.6 57.2

TABLE 5.11: Comparison of Wikipedia performance for various model estimation algorithms.

5.3 RESULTS 47

 83.3

 83.4

 83.5

 83.6

 83.7

 83.8

 83.9

 84

 84.1

 84.2

 84.3

 84.4

 43 44.5 46 47.5 49 50.5 52 53.5 55 56.5 58 59.5 61 62.5 64

A
cc

ur
ac

y
(F

-s
co

re
)

Speed (sentences / second)

Baseline
MIRA

GIS
BFGS

Perceptron

FIGURE 5.4: Overall performance comparison on theWSJ.

5.3.6 Summary

The major results of this chapter are summarised in Figure 5.4 and Figure 5.5. Before exploring the

results in these figures it is important to understand all of the information they contain.

Each circle represents a different model, and its position is determined by its speed and accuracy on the

corpus given in the caption. Note that the ranges covered by the axes on the two plots are different, this

was necessary to improve readability.

The size of each circle reflects the amount of data used to construct the model. The sizes do not scale

linearly with the amount of data, as that would make some invisible or others enormous, but they do

reflect the overall trend.

The colour of each circle is determined by the algorithm usedto train it, as shown in the key. Finally, the

dot in the centre of each circle indicates what data was used.Black dots indicateNANC data, white dots

indicate Wikipedia data, and no dot is included for models trained on only theWSJ from CCGBank.

Note that in Figure 5.4 theMIRA model trained on only theWSJhappens to coincide almost exactly with

a GIS model trained on Wikipedia, at50.5 sentences per second. The white dot at that point is for the

GIS model.

5.3 RESULTS 48

 80.7

 80.9

 81.1

 81.3

 81.5

 81.7

 81.9

 82.1

 82.3

 82.5

 82.7

 82.9

 45 47.5 50 52.5 55 57.5 60 62.5 65 67.5 70

A
cc

ur
ac

y
(F

-s
co

re
)

Speed (sentences / second)

Baseline
MIRA

GIS
BFGS

Perceptron

FIGURE 5.5: Overall performance comparison on Wikipedia.

The baseline model is marked using a single black dot and a black line is included at its F-score to enable

easier comparison of other models.

Finally, when looking at these diagrams the best results arein the top right hand corner, where speed and

accuracy are both high. However, any result that is above or close to the baseline accuracy line meets

our target of maintaining accuracy.

There are a few trends to note in these diagrams. First consider the arrangement of colours. In general

they are mixed up throughout the plot, which reflects the factthat all of the algorithms produce models

of similar quality. This is a crucial result as it means the work described in Chapter 4 was successful.

The second important trend to consider is the distribution of Wikipedia based models compared to

NANC based models. In Figure 5.4, where the evaluation is on newspaper text, theNANC based models

generally perform better, clustering in the top right hand corner. The opposite trend is observed in

Figure 5.4. This indicates that the models have indeed adapted to the particular domain of the training

data.

Also note that in both cases the most accurate models are those trained on larger amounts of text, visible

as larger circles higher up. At the same time, as more data from the wrong domain is used, performance

decreases. This is further evidence that adaptation is occurring.

5.4 SUMMARY 49

Some other patterns are present for the accuracy and speed ofparticular estimation methods. Specifically

GIS appears to generate particularly good models, and the averaged perceptron appears to generate the

fastest models.

5.4 Summary

I have now demonstrated that adaptive training can improve parsing efficiency. By parallelising the

training process and using the algorithms described in the previous chapter I was able to train on up to

650 times as much data. These new models were produced without any extra human annotated data, and

without any domain specific changes to the feature sets or alterations to the training process. The models

I produced allowed the supertagger to supply the tags the parser was most likely to use, leading more

sentences to be parsed earlier. This clearly demonstrates the potential for using automatically annotated

data for training.

Also, by training on substantial amounts of automatically annotated data from Wikipedia I was able to

create models that are adapted to the domain. Cross-corpus comparisons demonstrated that adaptation

was indeed occurring, and as more training data was used the system became more accurate.

One of the major issues raised within this chapter is that by tuning on the number of tags assigned per

word I am essentially tuning to the number of derivations theparser will have to consider. If the models

can be tuned in a different way it may be possible to decrease ambiguity, thereby increasing speed,

without losing accuracy. This challenge is one of the focuses of the next chapter.

CHAPTER 6

Optimisation and Analysis

In the process of running the adaptive training experimentstwo questions in particular were raised. First,

with so much extra data are their more features that are common enough to be useful? And second, does a

well founded method exist for optimising the number of tags assigned when multitagging? The answers

to these two questions form the basis of this chapter.

6.1 Background

6.1.1 Features

Recently, Cooper (2007) experimented with a range of extra features for theCCG supertagger, with

limited success. It is likely that data sparseness was a major issue for these extra features, as their

greater complexity meant that each possible combination ofattributes in the feature would occur less,

if at all, in the limited training data. If this problem can beovercome we may be able to reincorporate

these features with improved results.

6.1.2 Parser – Supertagger Interaction

When the C&C parser was first constructed it was thought that the parser should do most of the work to

maximise performance. However, as described in Chapter 2, it was found that by tightly integrating the

supertagger with the rest of the parser great speed improvements were possible, without loss of accuracy.

This interaction makes the behaviour of the system difficultto predict, and while some attempts at local

optimisation have been performed, there has been no comprehensive study of the parser – supertagger

interaction.

50

6.2 IMPLEMENTATION 51

6.2 Implementation

6.2.1 New Features

The standard features used by the supertagger, listed below, are taken from a five word window sur-

rounding the word being tagged.

• Word unigrams

• POStag unigrams

• POStag bigrams

I considered the expansion of this set to include:

• Word bigrams

• Word trigrams

• POStag trigrams

I also considered extension of the window to seven words for all features. The extra features this intro-

duces are described as ‘far’ in the results below.

One of the issues in the current architecture of the parser isthat introducing new features involves a

reasonable number of modifications in various locations in the supertagging code. Until now this has

not been a major issue, as more sophisticated features were not useful. Resolving this architectural issue

is one potential area for future work.

6.2.2 Accurate Sentence Level Speed Measurements

To accurately measure the behaviour of the parser I introduced a new timing mechanism, using the Intel

timing registers. This meant that the time taken to parse each individual sentence could be accurately

measured in clock cycles. To minimise interference all timing tests were performed without a user

logged in, but even so, the effects of background system processes can be observed in some of the plots

as slightly darker thin vertical patches.

6.3 FEATURE EXTENSION 52

Supertag Accuracy F-score Speed Features Attributes
(%) (%) (sents / sec) (millions)

Features Single Multiple

WSJ+ 2000kNANC

All 92.22 96.75 84.14 54.7 10.9 2.15
- far tags 92.21 96.76 84.16 56.0 10.8 2.15

- bitags 92.13 96.76 84.27 55.4 9.82 2.11
- far bitags 92.21 96.74 84.17 55.7 10.4 2.15

- tritags 92.11 96.75 84.26 55.8 8.51 1.91
- far tritags 92.16 96.75 84.29 55.6 9.02 2.03

Baseline 91.83 96.60 84.11 56.8 7.82 1.89
WSJ+ 4000kNANC

All 92.28 96.79 84.25 53.4 15.5 3.15
- far tritags 92.25 96.78 84.19 54.7 13.1 3.01

Baseline 91.93 96.62 84.10 55.9 11.9 2.87

TABLE 6.1: Subtractive analysis of all-tag feature sets using four million sentences.

6.3 Feature Extension

Using theMIRA training method I was able to quickly construct a large set ofmodels with a range of

feature sets, as shown in Table 6.2.

The results are not overwhelmingly positive, but are promising. The decrease in tag accuracy when

removing the extra tag based features indicates that these are the features contributing most to the im-

provements in accuracy. Based on these results I performed experiments with two million sentences and

only the extra tag features, as shown in Table 6.1.

For these tests I switched to theNANC data as the test set for theWSJ is eight times larger than the test

set for Wikipedia, enabling more rigorous evaluation. Significance testing between the baseline and the

best model, all extra features except tritags, showed a statistically significant improvement in recall, but

not precision or F-score. Based on these results I trained a small selection of models on four million

sentences, as shown in the table. Sadly there were no furtherimprovements in performance.

6.3 FEATURE EXTENSION 53

Supertag Accuracy Ambiguity F-score Speed Features Attributes
(%) (cats / word) (%) (sents / sec) (millions)

Features Single Multiple

WSJ

All 90.08 95.12 1.31 82.5 42.8 8.27 5.97
- far tags 90.14 95.15 1.32 82.3 42.9 8.25 5.97

- bitags 90.05 95.24 1.32 82.5 42.1 8.07 5.96
- far bitags 89.90 95.24 1.31 82.4 43.2 8.15 5.97

- tritags 90.22 95.34 1.33 82.3 42.6 7.87 5.89
- far tritags 90.31 95.31 1.32 82.2 43.2 7.99 5.93
- far words 90.32 95.27 1.32 82.6 43.1 7.91 5.89

- biwords 90.16 95.19 1.31 82.4 45.4 5.09 3.59
- far biwords 90.13 95.19 1.32 82.5 43.7 7.25 5.35

- triwords 90.20 95.16 1.31 82.6 46.0 4.88 2.78
- far triwords 90.19 95.24 1.32 82.2 43.6 6.88 4.73

Baseline 89.53 95.19 1.33 81.5 47.9 0.82 0.23

WSJ+ 40k Wiki
All 90.83 95.45 1.29 82.1 55.9 15.7 11.8

- far tags 90.68 95.45 1.29 81.9 53.6 15.7 11.8
- bitags 90.05 95.24 1.32 82.5 42.3 8.07 5.96

- far bitags 90.93 95.33 1.29 81.7 55.8 15.6 11.8
- tritags 90.70 95.47 1.29 82.0 54.5 15.2 11.7

- far tritags 90.95 95.49 1.29 82.2 54.9 15.3 11.8
- far words 90.79 95.47 1.29 81.9 55.7 15.1 11.7

- biwords 90.98 95.31 1.28 82.3 57.4 9.52 7.11
- far biwords 90.96 95.42 1.29 82.2 55.0 13.8 10.6

- triwords 91.04 95.42 1.29 82.1 57.8 9.02 5.48
- far triwords 90.88 95.47 1.28 82.0 55.5 13.0 9.37

Baseline 90.28 95.28 1.30 81.5 58.6 1.45 0.46

WSJ+ 400k Wiki
All 91.19 95.82 1.28 82.3 57.4 65.8 51.0

- far tags 91.35 95.79 1.28 82.0 57.3 65.8 51.0
- bitags 91.43 95.85 1.27 82.6 56.9 65.4 51.0

- far bitags 91.29 95.79 1.27 82.2 57.8 65.6 51.0
- tritags 91.32 95.91 1.28 82.2 57.9 64.7 50.8

- far tritags 91.38 95.91 1.28 82.5 56.8 65.0 50.9
- far words 91.34 95.91 1.28 82.3 57.4 63.7 50.4

- biwords 91.23 95.74 1.28 82.7 58.3 39.8 31.9
- far biwords 91.20 95.82 1.28 82.3 57.8 57.5 46.0

- triwords 90.98 95.74 1.27 82.6 58.8 34.2 21.4
- far triwords 91.10 95.83 1.28 82.6 58.4 52.7 39.5

Baseline 90.89 95.58 1.28 82.2 61.4 4.62 1.61

TABLE 6.2: Subtractive analysis of various feature sets using up to four hundred thou-
sand sentences.

6.4 THE INFLUENCE OFBETA LEVELS 54

6.4 The Influence of Beta Levels

The beta levels chosen have an enormous impact on the qualityof the supertagger, and hence, the parser.

A higher level will cut out more categories, leading to lowercategory accuracy and more failures to find

a derivation, but faster parsing. A lower level will raise category accuracy, but slow down the parser and

cause more chart explosions. For the C&C parser the situation is further complicated by the fact that

multiple beta levels are chosen. This means that it may be acceptable to have a higher first level that

many sentences fail to be parsed at, since those sentences will be parsed at the next level, and overall,

time will be saved.

Previously the selection of beta levels has been ad hoc, withslight variations explored, but no rigorous

method for their choice. In order to remain comparable to previous work all of the previous results were

measured using beta levels set based on ambiguity levels. The ambiguity level is the average number

of tags assigned per word by the supertagger at a given beta level. These values were calculated for the

standard model and used as reference values for all others. Since the models vary greatly, the beta levels

that correspond to the reference ambiguity levels had to be recalculated for each.

The problem with this scheme is clearly illustrated by Table6.3, where a collection of models trained

using various amounts ofNANC data have been tested using the default beta levels, as well as with beta

levels tuned as described above.

First consider the ambiguity and multi-tag accuracy columns. Most of the models have higher accuracy

when using tuned beta levels, but this is not surprising, since almost all of the models have lower ambi-

guity at the default level, and the more tags that are supplied, the higher than chance the correct one will

be included. Also, these models are being trained to producethe tag that the parser will use, rather than

the true tag, and so some decrease in tag accuracy makes sense.

The results become more confusing when we move to the next pair of columns, for F-score. In many

cases the default beta levels lead to higher F-scores, despite lowering tag accuracy. The changes are

not significant, but consider theBFGS 2000k model in which tag accuracy is decreasing by0.91% and

F-score increases by0.11%. This fits with the theory that adaptation is occurring, since it suggests the

words now being incorrectly tagged were going to be treated incorrectly by the parser anyway.

What all this discussion is leading up to is contained in the last two columns, for speed. The results

in these columns follow the pattern in the column for ambiguity, which fits with the initial aim of this

6.4 THE INFLUENCE OFBETA LEVELS 55

Tag Accuracy Ambiguity Multi Tag Accuracy F-score Speed
(%) (cats / word) (%) (%) (sents / sec)

Data Default Default Default Tuned Default Tuned Default Tuned

GIS

0k 91.49 1.28 96.42 96.32 83.83 83.82 46.7 51.7
40k 91.62 1.24 96.16 96.36 84.07 84.05 58.9 56.9

400k 91.87 1.20 95.92 96.46 84.18 83.98 68.3 56.5
2000k 91.98 1.19 96.00 96.64 84.24 84.22 70.4 55.6
4000k 91.98 1.19 96.00 96.68 84.37 84.32 71.3 55.0
BFGS

0k 91.38 1.27 96.30 96.29 83.73 83.73 49.3 52.1
40k 91.51 1.23 95.93 96.24 84.06 84.14 62.4 57.3

400k 91.46 1.12 94.63 96.12 83.68 83.89 95.2 60.4
2000k 91.95 1.16 95.61 96.52 84.42 84.31 81.4 57.8
4000k 91.97 1.18 95.76 96.55 84.30 84.19 78.9 57.2

AP

0k 91.41 1.04 92.58 95.65 78.32 83.74 136.0 59.2
40k 91.42 1.03 92.42 95.77 78.75 84.04 161.0 64.0

400k 91.68 1.02 92.34 96.08 78.55 83.91 164.0 62.9
MIRA

0k 91.42 1.31 96.42 96.19 83.64 83.69 43.0 50.6
40k 91.61 1.24 96.09 96.25 83.96 83.93 58.7 56.7

400k 91.78 1.16 95.43 96.39 83.96 83.92 77.4 57.5
2000k 91.83 1.13 95.26 96.60 83.96 84.11 85.1 56.8
4000k 91.93 1.12 95.09 96.62 83.99 84.10 90.2 55.0

TABLE 6.3: Performance comparison for models using default, or tuned beta levels.

work, to reduce ambiguity and thus improve speed. This demonstrates that while the decision to tune

the beta levels ensures a fair comparison, it means we are notgetting the most out of the models that

we can. Also, the results in Table 6.3 for the Average Perceptron based models clearly indicate that a

flexible strategy for beta level optimisation that is specific to each model is required. Also, it would be

preferable to develop a strategy that does not require a great deal of gold standard data, as such resources

are expensive to produce.

The first step to developing such a strategy is to explore the behaviour of the parser and the supertagger,

something that has not been systematically done previously. In the next section I take the first steps

towards a solution by exploring the behaviour of the parser on section 00 of theWSJ.

6.5 AGGREGATEDANALYSIS OF PARSERBEHAVIOUR 56

6.5 Aggregated Analysis of Parser Behaviour

I performed a series of tests to get some sense of the nature ofthe data and how the parser behaves

as beta and the dictionary cutoff vary. I considered one hundred beta values spaced logarithmically

between1.0 and0.0001, paired with twenty-two cutoffs between1 and211. For each pair I parsed all

of the sentences in section 00 of theWSJ.

When considering the plots in the following sections note that the colour scales vary between sets of

plots, to ensure an adequate range of colour is visible. Alsoremember that the default beta levels and

dictionary cutoffs are as follows:

• 0.075, 20

• 0.030, 20

• 0.010, 20

• 0.005, 20

• 0.001, 150

6.5.1 All Sentences

The first set of plots, in Figure 6.1 consider the average results across all sentences in section 00. Am-

biguity appears as expected, smoothly increasing as the beta level decreases, though it is interesting to

note how little difference the tag dictionary cutoff makes,particularly at higher beta values. The cov-

erage plot is also sensible, showing loss of coverage on either side. The decrease on the left is due to

explosions as the number of tags assigned is too large. The decrease on the right is caused by sentences

that the parser fails to find a spanning analysis for, as the range of options provided by the supertagger

is too small.

The next three plots, precision, recall and F-score, all have the same scale for more convenient compar-

ison. The F-score plot is dominated by the recall variations, which are caused by the loss of coverage.

Based on these results it appears as if there is only a very limited band in which high performance is

possible, but while this may be the case for a single beta level and dictionary cutoff, in fact the system

has five such levels. This makes it difficult to draw conclusions from these plots, as a sentence that is

not parsed for one pair of parameters may be parsed by anotherpair. It doesn’t make sense to penalise

6.5 AGGREGATEDANALYSIS OF PARSERBEHAVIOUR 57

the first pair on accuracy for sentences that are not parsed atthat level, as those sentences have not been

completely knocked out.

The supertag accuracy plot is presumably dominated by the coverage issues as well, as the accuracy here

is calculated based on the final set of tags the parser uses. Finally, the plot for parsing time follows the

same pattern as the ambiguity plot. This makes sense as the higher the ambiguity the larger the number

of possible derivations the parser must consider.

6.5.2 Only Successfully Parsed Sentences

If we average over only the sentences that were parsed at eachpoint we remove the dominating effect of

coverage, producing the plots in Figure 6.2. No plot is included for coverage, as we are only considering

sentences that are parsed. The trends in the ambiguity and parsing time plots do not change significantly,

but the maximum time is25% lower, and is not approached until further to the right. Thisis due to the

removal of the times for sentences that exploded. It may not be surprising, but it does demonstrate the

cost of exploding.

The next three plots, for accuracy, recall and F-score, change considerably. Note the extreme change

in scale, from a lower end of0.72 in the previous set of plots to0.82 here. Interestingly there is still a

slight decrease in recall on the far right, but overall the plot is much more similar to the precision plot.

An interesting pattern that can be seen in the previous set ofplots as well as here is the drop in perfor-

mance when decreasing the tag dictionary cutoff from11 to 1. This is presumably just the result of noise

in the data, which is lost once the cutoff is actually in use.

While these plots avoid the coverage issue of the previous set, they introduce a new issue – no two points

on the plot are actually directly comparable. The sentencesbeing used in the calculations at one point

are not the same as those used at another point. This is a serious issue because the sentences being parsed

further to the right are generally shorter, easier sentences, which explains why accuracy is so high.

6.5.3 Only Sentences Always Parsed

It turns out that1, 318 of the 1, 913 sentences in section 00 are parsed at all points in these plots. So

only using sentences that are always parsed is an easy way to avoid the coverage issue, and the need to

have the same sentences used for every measurement.

6.5 AGGREGATEDANALYSIS OF PARSERBEHAVIOUR 58

Ambiguity

 0.001 0.01 0.1 1

Beta

 1
 21
 41
 61
 81

 101
 121
 141
 161
 181
 201

C
ut

of
f

 1

 1.5

 2

 2.5

 3

(t
ag

s
/ w

or
d)

Coverage

 0.001 0.01 0.1 1

Beta

 1
 21
 41
 61
 81

 101
 121
 141
 161
 181
 201

C
ut

of
f

 0.7

 0.8

 0.9

 1

F
ra

ct
io

n
P

ar
se

d

Precision

 0.001 0.01 0.1 1

Beta

 1
 21
 41
 61
 81

 101
 121
 141
 161
 181
 201

C
ut

of
f

 0.72

 0.76

 0.8

 0.84

 0.88

Recall

 0.001 0.01 0.1 1

Beta

 1
 21
 41
 61
 81

 101
 121
 141
 161
 181
 201

C
ut

of
f

 0.72

 0.76

 0.8

 0.84

 0.88

F-score

 0.001 0.01 0.1 1

Beta

 1
 21
 41
 61
 81

 101
 121
 141
 161
 181
 201

C
ut

of
f

 0.72

 0.76

 0.8

 0.84

 0.88

Supertag Accuracy

 0.001 0.01 0.1 1

Beta

 1
 21
 41
 61
 81

 101
 121
 141
 161
 181
 201

C
ut

of
f

 0.9

 0.905

 0.91

 0.915

 0.92

 0.925

Parsing Time

 0.001 0.01 0.1 1

Beta

 1
 21
 41
 61
 81

 101
 121
 141
 161
 181
 201

C
ut

of
f

 0

 0.05

 0.1

 0.15

 0.2

T
im

e
(s

ec
on

ds
)

FIGURE 6.1: Parsing behaviour over all sentences in section 00 of the WSJ.

6.5 AGGREGATEDANALYSIS OF PARSERBEHAVIOUR 59

Ambiguity

 0.001 0.01 0.1 1

Beta

 1
 21
 41
 61
 81

 101
 121
 141
 161
 181
 201

C
ut

of
f

 1

 1.5

 2

 2.5

 3

(t
ag

s
/ w

or
d)

Parsing Time

 0.001 0.01 0.1 1

Beta

 1
 21
 41
 61
 81

 101
 121
 141
 161
 181
 201

C
ut

of
f

 0

 0.03

 0.06

 0.09

 0.12

 0.15

T
im

e
(s

ec
on

ds
)

Precision

 0.001 0.01 0.1 1

Beta

 1
 21
 41
 61
 81

 101
 121
 141
 161
 181
 201

C
ut

of
f

 0.82

 0.83

 0.84

 0.85

 0.86

Recall

 0.001 0.01 0.1 1

Beta

 1
 21
 41
 61
 81

 101
 121
 141
 161
 181
 201

C
ut

of
f

 0.82

 0.83

 0.84

 0.85

 0.86

F-score

 0.001 0.01 0.1 1

Beta

 1
 21
 41
 61
 81

 101
 121
 141
 161
 181
 201

C
ut

of
f

 0.82

 0.83

 0.84

 0.85

 0.86

Supertag Accuracy

 0.001 0.01 0.1 1

Beta

 1
 21
 41
 61
 81

 101
 121
 141
 161
 181
 201

C
ut

of
f

 0.9

 0.91

 0.92

 0.93

 0.94

FIGURE 6.2: Parsing behaviour over parsed sentences in section 00 of the WSJ.

The changes observed between the two previous sets of plots continue here. Now accuracy is varying

between85% and91%, compared to82% and86% in the previous set. Parsing time is only extending

up to0.13 seconds, rather than0.15. And supertag accuracy has increased as well. No major changes in

the patterns are observed, with the exception of parsing time, where the increase is concentrated further

to the left of the plot. This is probably a result of the complexity of the sentences being excluded from

this plot, and is explored further in the following section.

6.5 AGGREGATEDANALYSIS OF PARSERBEHAVIOUR 60

Ambiguity

 0.001 0.01 0.1 1

Beta

 1
 21
 41
 61
 81

 101
 121
 141
 161
 181
 201

C
ut

of
f

 1

 1.5

 2

 2.5

 3

(t
ag

s
/ w

or
d)

Parsing Time

 0.001 0.01 0.1 1

Beta

 1
 21
 41
 61
 81

 101
 121
 141
 161
 181
 201

C
ut

of
f

 0

 0.03

 0.06

 0.09

 0.12

T
im

e
(s

ec
on

ds
)

Precision

 0.001 0.01 0.1 1

Beta

 1
 21
 41
 61
 81

 101
 121
 141
 161
 181
 201

C
ut

of
f

 0.85

 0.87

 0.89

 0.91

Recall

 0.001 0.01 0.1 1

Beta

 1
 21
 41
 61
 81

 101
 121
 141
 161
 181
 201

C
ut

of
f

 0.85

 0.87

 0.89

 0.91

F-score

 0.001 0.01 0.1 1

Beta

 1
 21
 41
 61
 81

 101
 121
 141
 161
 181
 201

C
ut

of
f

 0.85

 0.87

 0.89

 0.91

Supertag Accuracy

 0.001 0.01 0.1 1

Beta

 1
 21
 41
 61
 81

 101
 121
 141
 161
 181
 201

C
ut

of
f

 0.92

 0.93

 0.94

 0.95

 0.96

FIGURE 6.3: Average parsing behaviour for parsed sentences in section 00 of theWSJ.

While the sentences these plots are based on make up more thantwo thirds of the set, they are not

actually our primary concern when choosing parameters. They are important for the choice of the first

level, but irrelevant after that, since all of these sentences are guaranteed to be parsed at the first level.

6.6 BEHAVIOUR BY SENTENCELENGTH 61

Min Length Max Length Total Always Parsed

1 12 288 287
13 17 314 310
18 21 289 283
22 26 321 258
27 33 361 160
34 250 340 20

TABLE 6.4: Break down of data based on sentence length.

6.6 Behaviour by Sentence Length

Parsing efficiency is heavily dependent on sentence length.Longer sentences are generally more com-

plex and therefore more time consuming and difficult to parse. At the moment the parser functions

exactly the same for longer sentences as it does for shorter sentences. By using different parameters

depending on the length of the sentence we may be able to prevent explosions for larger sentences.

Table 6.4 summarises the six sets the sentences were dividedinto. These ranges were chosen to balance

the size of the sets as much as possible. This table alone makes it clear that different strategies may

be needed depending on sentence length. Almost all of the sentences containing less than twenty two

words are parsed regardless of the parameters used; less than half of the sentences that are twenty two

words or longer have such flexibility.

As before, more than one set of plots have been included. The first set provides the results for all

sentences, while the second set are based on only sentences that always receive a parse. The second set

considered in the previous section, calculated based on allthe sentences parsed at each point, has not

been included for the reason raised in the previous section –it is difficult to draw meaningful conclusions

when the set of sentences being used is varying across the graph.

Also note that the plots have been ordered by row from left to right. This means the top left plot is for

sentences of length1 to 12, the top middle plot is for sentences of length13 to 17, the top right plot is

for sentences of length18 to 21 and so on.

6.6.1 All Sentences

Not all of the metrics have been included either. Ambiguity followed the same trends in all cases,

and precision also displayed very similar trends, though there was an overall decrease in precision as

6.6 BEHAVIOUR BY SENTENCELENGTH 62

Coverage

 0.001 0.01 0.1 1

Beta

 1
 21
 41
 61
 81

 101
 121
 141
 161
 181
 201

C
ut

of
f

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

F
ra

ct
io

n
P

ar
se

d

Coverage

 0.001 0.01 0.1 1

Beta

 1
 21
 41
 61
 81

 101
 121
 141
 161
 181
 201

C
ut

of
f

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

F
ra

ct
io

n
P

ar
se

d

Coverage

 0.001 0.01 0.1 1

Beta

 1
 21
 41
 61
 81

 101
 121
 141
 161
 181
 201

C
ut

of
f

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

F
ra

ct
io

n
P

ar
se

d

Coverage

 0.001 0.01 0.1 1

Beta

 1
 21
 41
 61
 81

 101
 121
 141
 161
 181
 201

C
ut

of
f

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

F
ra

ct
io

n
P

ar
se

d

Coverage

 0.001 0.01 0.1 1

Beta

 1
 21
 41
 61
 81

 101
 121
 141
 161
 181
 201

C
ut

of
f

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

F
ra

ct
io

n
P

ar
se

d

Coverage

 0.001 0.01 0.1 1

Beta

 1
 21
 41
 61
 81

 101
 121
 141
 161
 181
 201

C
ut

of
f

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

F
ra

ct
io

n
P

ar
se

d

FIGURE 6.4: Stats by length for coverage, over all sentences.

sentence length increased. Finally, plots of F-score have not been included as they are dominated by

recall and add little extra information.

The breakdown for coverage clearly demonstrates that the parser behaves quite differently depending on

sentence length. For the first three plots there is almost no decrease in coverage on the left hand side,

and only a slight decrease on the right. This indicates that for shorter sentences the parser’s chart rarely

explodes and so the only problem for coverage is when the tag set is too restrictive and so no spanning

analysis can be formed.

Meanwhile, longer sentences experience major issues as thetag set grows. This makes sense, as a slight

increase in tag set size across a long sentence will lead to many new potential derivations. This decrease

in coverage for smaller beta values is important to rememberfor the following analysis, particularly for

the longest sentences, as it will decrease performance on all other metrics.

The next set of plots, for accuracy of the final supertag set used by the parser, are slightly surprising.

As in the previous section, we observe a decrease in accuracyas we move left from the centre of the

plot, suggesting that given more options, the parser is lesslikely to make the right choice. Interestingly

the parser is better at the medium length sentences than the shortest group, particularly for high tag

dictionary cutoffs and low beta levels, where the lowest result of all the plots is found. As expected,

results for the longest sentences are noticeably poorer throughout.

6.6 BEHAVIOUR BY SENTENCELENGTH 63

Supertag Accuracy

 0.001 0.01 0.1 1

beta

 1
 21
 41
 61
 81

 101
 121
 141
 161
 181
 201

cu
to

ff

 0.88

 0.89

 0.9

 0.91

 0.92

 0.93

 0.94

Supertag Accuracy

 0.001 0.01 0.1 1

beta

 1
 21
 41
 61
 81

 101
 121
 141
 161
 181
 201

cu
to

ff

 0.88

 0.89

 0.9

 0.91

 0.92

 0.93

 0.94

Supertag Accuracy

 0.001 0.01 0.1 1

beta

 1
 21
 41
 61
 81

 101
 121
 141
 161
 181
 201

cu
to

ff

 0.88

 0.89

 0.9

 0.91

 0.92

 0.93

 0.94

Supertag Accuracy

 0.001 0.01 0.1 1

beta

 1
 21
 41
 61
 81

 101
 121
 141
 161
 181
 201

cu
to

ff

 0.88

 0.89

 0.9

 0.91

 0.92

 0.93

 0.94

Supertag Accuracy

 0.001 0.01 0.1 1

beta

 1
 21
 41
 61
 81

 101
 121
 141
 161
 181
 201

cu
to

ff

 0.88

 0.89

 0.9

 0.91

 0.92

 0.93

 0.94

Supertag Accuracy

 0.001 0.01 0.1 1

beta

 1
 21
 41
 61
 81

 101
 121
 141
 161
 181
 201

cu
to

ff

 0.88

 0.89

 0.9

 0.91

 0.92

 0.93

 0.94

FIGURE 6.5: Stats by length for supertag accuracy, over all sentences.

Recall

 0.001 0.01 0.1 1

Beta

 1
 21
 41
 61
 81

 101
 121
 141
 161
 181
 201

C
ut

of
f

 0.72

 0.74

 0.76

 0.78

 0.8

 0.82

 0.84

 0.86

Recall

 0.001 0.01 0.1 1

Beta

 1
 21
 41
 61
 81

 101
 121
 141
 161
 181
 201

C
ut

of
f

 0.72

 0.74

 0.76

 0.78

 0.8

 0.82

 0.84

 0.86

Recall

 0.001 0.01 0.1 1

Beta

 1
 21
 41
 61
 81

 101
 121
 141
 161
 181
 201

C
ut

of
f

 0.72

 0.74

 0.76

 0.78

 0.8

 0.82

 0.84

 0.86

Recall

 0.001 0.01 0.1 1

Beta

 1
 21
 41
 61
 81

 101
 121
 141
 161
 181
 201

C
ut

of
f

 0.72

 0.74

 0.76

 0.78

 0.8

 0.82

 0.84

 0.86

Recall

 0.001 0.01 0.1 1

Beta

 1
 21
 41
 61
 81

 101
 121
 141
 161
 181
 201

C
ut

of
f

 0.72

 0.74

 0.76

 0.78

 0.8

 0.82

 0.84

 0.86

Recall

 0.001 0.01 0.1 1

Beta

 1
 21
 41
 61
 81

 101
 121
 141
 161
 181
 201

C
ut

of
f

 0.72

 0.74

 0.76

 0.78

 0.8

 0.82

 0.84

 0.86

FIGURE 6.6: Stats by length for recall, over all sentences.

The results for recall largely mirror the observations in the previous section. For the shorter sentences,

where coverage is not a major issue, the plots generally reflect the trends in supertag accuracy. For

longer sentences the plots are dominated by the sentences that are only parsed in a narrow range outside

of which either explosions occur, or no spanning analysis can be found.

6.6 BEHAVIOUR BY SENTENCELENGTH 64

Parsing Time

 0.001 0.01 0.1 1

Beta

 1
 21
 41
 61
 81

 101
 121
 141
 161
 181
 201

C
ut

of
f

 0

 0.1

 0.2

 0.3

 0.4

Parsing Time

 0.001 0.01 0.1 1

Beta

 1
 21
 41
 61
 81

 101
 121
 141
 161
 181
 201

C
ut

of
f

 0

 0.1

 0.2

 0.3

 0.4

Parsing Time

 0.001 0.01 0.1 1

Beta

 1
 21
 41
 61
 81

 101
 121
 141
 161
 181
 201

C
ut

of
f

 0

 0.1

 0.2

 0.3

 0.4

Parsing Time

 0.001 0.01 0.1 1

Beta

 1
 21
 41
 61
 81

 101
 121
 141
 161
 181
 201

C
ut

of
f

 0

 0.1

 0.2

 0.3

 0.4

Parsing Time

 0.001 0.01 0.1 1

Beta

 1
 21
 41
 61
 81

 101
 121
 141
 161
 181
 201

C
ut

of
f

 0

 0.1

 0.2

 0.3

 0.4

Parsing Time

 0.001 0.01 0.1 1

Beta

 1
 21
 41
 61
 81

 101
 121
 141
 161
 181
 201

C
ut

of
f

 0

 0.1

 0.2

 0.3

 0.4

FIGURE 6.7: Stats by length for speed, over all sentences.

Finally, the results for speed are as expected. The longer a sentence is the longer it takes to parse. It is

worth noting the particularly bad performance for the longest sentences, which are slow to parse even at

the highest beta levels.

6.6.2 Only Sentences Always Parsed

As for the previous set of results, ambiguity plots for sentences that are always parsed are not included

as they demonstrate the same trends as previously. Also, thespeed results are very similar to those in

the previous section, with the exception that the penalty for longer sentences is no longer as bad.

The most significant difference between the supertag accuracy plots in Figure 6.8 and those in Figure 6.5

is the improvement for longer sentences. This makes sense, as the sentences that are not always parsed

are the hard ones, and ignoring them should provide a boost toperformance. It is slightly surprising how

great a difference it makes, since these plots show accuracyfor the longer sentences as actually better

than for shorter sentences.

Plots for precision have been included in this section because there is a lot more going on. The impressive

decrease in performance in the top right plot indicates again that the parser is more likely to make the

wrong decision when given more choice. The most likely reason for this trend being less visible in

the second row of plots, for longer sentences, is that the parser’s chart explodes at that point and those

sentences are ignored for these plots. There is some particularly strange behaviour in the bottom left

6.6 BEHAVIOUR BY SENTENCELENGTH 65

Supertag Accuracy

 0.001 0.01 0.1 1

beta

 1
 21
 41
 61
 81

 101
 121
 141
 161
 181
 201

cu
to

ff

 0.9

 0.925

 0.95

 0.975

Supertag Accuracy

 0.001 0.01 0.1 1

beta

 1
 21
 41
 61
 81

 101
 121
 141
 161
 181
 201

cu
to

ff

 0.9

 0.925

 0.95

 0.975

Supertag Accuracy

 0.001 0.01 0.1 1

beta

 1
 21
 41
 61
 81

 101
 121
 141
 161
 181
 201

cu
to

ff

 0.9

 0.925

 0.95

 0.975

Supertag Accuracy

 0.001 0.01 0.1 1

beta

 1
 21
 41
 61
 81

 101
 121
 141
 161
 181
 201

cu
to

ff

 0.9

 0.925

 0.95

 0.975

Supertag Accuracy

 0.001 0.01 0.1 1

beta

 1
 21
 41
 61
 81

 101
 121
 141
 161
 181
 201

cu
to

ff

 0.9

 0.925

 0.95

 0.975

Supertag Accuracy

 0.001 0.01 0.1 1

beta

 1
 21
 41
 61
 81

 101
 121
 141
 161
 181
 201

cu
to

ff

 0.9

 0.925

 0.95

 0.975

FIGURE 6.8: Stats by length for supertag accuracy, over parsed sentences.

Precision

 0.001 0.01 0.1 1

Beta

 1
 21
 41
 61
 81

 101
 121
 141
 161
 181
 201

C
ut

of
f

 0.85

 0.87

 0.89

 0.91

 0.93

Precision

 0.001 0.01 0.1 1

Beta

 1
 21
 41
 61
 81

 101
 121
 141
 161
 181
 201

C
ut

of
f

 0.85

 0.87

 0.89

 0.91

 0.93

Precision

 0.001 0.01 0.1 1

Beta

 1
 21
 41
 61
 81

 101
 121
 141
 161
 181
 201

C
ut

of
f

 0.85

 0.87

 0.89

 0.91

 0.93

Precision

 0.001 0.01 0.1 1

Beta

 1
 21
 41
 61
 81

 101
 121
 141
 161
 181
 201

C
ut

of
f

 0.85

 0.87

 0.89

 0.91

 0.93

Precision

 0.001 0.01 0.1 1

Beta

 1
 21
 41
 61
 81

 101
 121
 141
 161
 181
 201

C
ut

of
f

 0.85

 0.87

 0.89

 0.91

 0.93

Precision

 0.001 0.01 0.1 1

Beta

 1
 21
 41
 61
 81

 101
 121
 141
 161
 181
 201

C
ut

of
f

 0.85

 0.87

 0.89

 0.91

 0.93

FIGURE 6.9: Stats by length for precision, over parsed sentences.

plot, where at the lower beta levels precision drops as the cutoff is raised, but then improves again. The

reason for this is unknown, though it could be a quirk of the sentences being used, since for the lower

row a considerable number of sentences are being ignored.

Now that the sentences that are not always parsed are ignoredwe can see very different trends for recall.

Instead we observe patterns similar to those in the precision plots and no other particularly strange

behaviour. Since the precision and recall plots are so similar, plots of F-score have not been included.

6.7 INTERESTINGSENTENCES 66

Recall

 0.001 0.01 0.1 1

Beta

 1
 21
 41
 61
 81

 101
 121
 141
 161
 181
 201

C
ut

of
f

 0.85

 0.87

 0.89

 0.91

 0.93

Recall

 0.001 0.01 0.1 1

Beta

 1
 21
 41
 61
 81

 101
 121
 141
 161
 181
 201

C
ut

of
f

 0.85

 0.87

 0.89

 0.91

 0.93

Recall

 0.001 0.01 0.1 1

Beta

 1
 21
 41
 61
 81

 101
 121
 141
 161
 181
 201

C
ut

of
f

 0.85

 0.87

 0.89

 0.91

 0.93

Recall

 0.001 0.01 0.1 1

Beta

 1
 21
 41
 61
 81

 101
 121
 141
 161
 181
 201

C
ut

of
f

 0.85

 0.87

 0.89

 0.91

 0.93

Recall

 0.001 0.01 0.1 1

Beta

 1
 21
 41
 61
 81

 101
 121
 141
 161
 181
 201

C
ut

of
f

 0.85

 0.87

 0.89

 0.91

 0.93

Recall

 0.001 0.01 0.1 1

Beta

 1
 21
 41
 61
 81

 101
 121
 141
 161
 181
 201

C
ut

of
f

 0.85

 0.87

 0.89

 0.91

 0.93

FIGURE 6.10: Stats by length for recall, over parsed sentences.

6.7 Interesting Sentences

The exploration so far has focused on aggregated behaviour across larger sets of sentences. The problem

with this approach is that it is dominated by the common cases, in particular the sentences that are parsed

regardless of the parameters used. In this section I consider some specific examples to explore the factors

affecting accuracy.

6.7.1 Sentence 12

Before considering the exceptional cases it is worth considering one of the common cases – a sentence

that is parsed for all the parameter pairs considered. The sentence I have chosen is:

We have no useful information on whether users are at risk

, said James A. Talcott of Boston ’s Dana-Farber Cancer

Institute .

The gold standardPOStags assigned to each word in CCGBank are:

We|PRP have|VBP no|DT useful|JJ information|NN on|IN

whether|IN users|NNS are|VBP at|IN risk|NN ,|, said|VBD

James|NNP A.|NNP Talcott|NNP of|IN Boston|NNP ’s|POS

Dana-Farber|NNP Cancer|NNP Institute|NNP .|.

6.7 INTERESTINGSENTENCES 67

Ambiguity

 0.001 0.01 0.1 1

Beta

 1
 21
 41
 61
 81

 101
 121
 141
 161
 181
 201

C
ut

of
f

 1

 1.5

 2

 2.5

 3

(t
ag

s
/ w

or
d)

Parsing Time

 0.001 0.01 0.1 1

Beta

 1

 31

 61

 91

 121

 151

 181

 211

C
ut

of
f

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

FIGURE 6.11: Parsing behaviour for the sentence 12 sentence in section 00.

In this example there were no errors made by the C&CPOStagger, as is the case for slightly more than

half the sentences in section 00. The gold standard supertags are:

We|PRP|NP have|VBP|(S[dcl]\ NP)/NP no|DT|NP[nb]/N

useful|JJ|N/N information|NN|N on|IN|(NP\ NP)/S[qem]

whether|IN|S[qem]/S[dcl] users|NNS|N are|VBP|(S[dcl]\ NP)/PP

at|IN|PP/NP risk|NN|N ,|,|, said|VBD|(S[dcl]\ S[dcl])/NP

James|NNP|N/N A.|NNP|N/N Talcott|NNP|N of|IN|(NP\ NP)/NP

Boston|NNP|N ’s|POS|(NP[nb]/N)\ NP Dana-Farber|NNP|N/N

Cancer|NNP|N/N Institute|NNP|N .|.|.

Since this example is parsed everywhere and in the same way, the coverage, F-score, precision, recall

and supertag accuracy plots have not been included. For all of these metrics this sentence had a perfect

score.

The ambiguity plot appears very similar to the average plotsconsidered in the previous sections. Tag

dictionary cutoff appears to have very little effect, whiledecreasing the beta value smoothly increases

the ambiguity. Also, as observed previously, the parsing time plot follows the same patterns as the

ambiguity plot.

6.7.2 Sentence 577

This sentence demonstrates the power of thePOStagger. The sentence is:

One claims he ’s pro-choice .

6.7 INTERESTINGSENTENCES 68

Ambiguity

 0.001 0.01 0.1 1

Beta

 1

 31

 61

 91

 121

 151

 181

 211

C
ut

of
f

 1

 1.5

 2

 2.5

 3

 3.5

 4

(t
ag

s
/ w

or
d)

F-score

 0.001 0.01 0.1 1

Beta

 1

 31

 61

 91

 121

 151

 181

 211

C
ut

of
f

 0

 0.2

 0.4

 0.6

 0.8

 1

Supertag Accuracy

 0.001 0.01 0.1 1

Beta

 1

 31

 61

 91

 121

 151

 181

 211

C
ut

of
f

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Parsing Time

 0.001 0.01 0.1 1

Beta

 1

 31

 61

 91

 121

 151

 181

 211
C

ut
of

f

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

FIGURE 6.12: Parsing behaviour for the sentence 577 sentence in section 00.

The gold standardPOStags are:

One|NN claims|VBZ he|PRP ’s|VBZ pro-choice|JJ .|.

The C&CPOStagger makes two mistakes:

• One, NN to CD

• claims, VBZ to NNS

By misinterpreting the wordOne as a number, rather than a noun, thePOS tagger has thrown a serious

spanner in the works. The mistake is understandable, asOne would be a number in most sentences.

This sentence is parsed for all pairs of parameters tested, but as Figure 6.12 shows, the behaviour is

slightly odd.

The gold standard supertags and labelled dependencies are:

6.7 INTERESTINGSENTENCES 69

One|NN|N

claims|VBZ|(S[dcl]\ NP)/S[dcl]

he|PRP|NP

’s|VBZ|(S[dcl]\ NP)/(S[adj]\ NP)

pro-choice|JJ|S[adj]\ NP

.|.|.

claims_2 (S[dcl]\ NP)/S[dcl] 2 ’s_4

claims_2 (S[dcl]\ NP)/S[dcl] 1 One_1

’s_4 (S[dcl]\ NP)/(S[adj]\ NP) 1 he_3

’s_4 (S[dcl]\ NP)/(S[adj]\ NP) 2 pro-choice_5

pro-choice_5 S[adj]\ NP 1 he_3

In the region furthest to the right the supertagger only supplies one tag per word. The mistakes made by

the POS tagger lead it to treatOne claims as a noun, whereOne is modifyingclaims. With the last

four tags correct the parser is able to identify some of the correct dependencies, as shown below.

One|CD|N/N

claims|NNS|N

he|PRP|NP

’s|VBZ|(S[dcl]\ NP)/(S[adj]\ NP)

pro-choice|JJ|S[adj]\ NP

.|.|.

One_1 (N/N) 1 claims_2

’s_4 (NP\ NP) 1 claims_2

’s_4 ((S[dcl]\ NP)/(S[adj]\ NP)) 1 he_3

’s_4 ((S[dcl]\ NP)/(S[adj]\ NP)) 2 pro-choice_5

pro-choice_5 (S[adj]\ NP) 1 he_3

In the middle region, where F-score falls dramatically, thesupertagger has the flexibility to assign extra

tags:

6.7 INTERESTINGSENTENCES 70

One - N/N, (S/S)/(S/S)

claims - N

he - NP

’s - (S[dcl]\ NP)/(S[adj]\ NP), (S[dcl]\ NP)/NP

pro-choice - S[adj]\ NP, (S\ NP)

(S\ NP), N, (S[adj]\ NP)/S[dcl]

. - .

However, this simply misleads the parser, which chooses a derivation using one more incorrect tag than

previously:

One|CD|N/N

claims|NNS|N

he|PRP|NP

’s|VBZ|(S[dcl]\ NP)/NP

pro-choice|JJ|S[adj]\ NP

.|.|.

One_1 (N/N) 1 claims_2

’s_4 ((S[dcl]\ NP)/NP) 1 he_3

’s_4 ((S[dcl]\ NP)/NP) 2 claims_2

pro-choice_5 (S[adj]\ NP) 1 claims_2

In the left-most region the supertagger finally has enough flexibility to give all of the correct tags as

options, which the parser is able to combine into the correctderivation. Importantly, tests where the

parser was given the correct supertags led to the correct derivation, and when the supertagger was given

the correctPOStags it produced the right supertags.

Clearly an improvement at either of the earlier stages will lead to an improvement in parser performance.

The other important feature of this example is that providing more supertags is not always best – if they

are not the correct supertags they may simply mislead the parser.

6.7 INTERESTINGSENTENCES 71

6.7.3 Sentence 1791

This sentence demonstrates interesting behaviour by the parser, and provides one possible explanation

for the accuracy improvements described in the previous chapter’s results. The sentence is:

If the Japanese companies are seriously considering their

survival , they could do at least three things to improve the

situation : raise salaries higher than those of financial

institutions ; improve working conditions -LRB- better offices

and more vacations , for example -RRB- ; accept and hire more

labor from outside Japan .

With gold standardPOStags it is:

If|IN the|DT Japanese|JJ companies|NNS are|VBP seriously|RB

considering|VBG their|PRP$ survival|NN ,|, they|PRP could|MD

do|VB at|IN least|JJS three|CD things|NNS to|TO improve|VB

the|DT situation|NN :|: raise|VB salaries|NNS higher|JJR

than|IN those|DT of|IN financial|JJ institutions|NNS ;|;

improve|VB working|NN conditions|NNS -LRB-|LRB better|JJR

offices|NNS and|CC more|JJR vacations|NNS ,|, for|IN

example|NN -RRB-|RRB ;|; accept|VB and|CC hire|VB more|JJR

labor|NN from|IN outside|JJ Japan|NNP .|.

Our POStagger produces the same results for all words except the following:

• :, : – IN

• working, NN – VBG

• -LRB-, LRB – JJ

• -RRB-, RRB – NNP

• outside, JJ – IN

Interestingly, Figure 6.13 shows that the only times this sentences receives a parse are when the supertags

chosen by the parser are incorrect. At all other times eitheran explosion occurs or no spanning analysis

can be found. In this case if the supertagger supplies the correct tags we will fail to find an analysis, but

if it had been trained to supply the tags that the parser wanted, we would find an analysis. Cases like this

could be the reason for the observed accuracy improvements during the adaptive training experiments.

6.7 INTERESTINGSENTENCES 72

Ambiguity

 0.001 0.01 0.1 1

Beta

 1

 31

 61

 91

 121

 151

 181

 211

C
ut

of
f

 2

 4

 6

 8

 10

 12

(t
ag

s
/ w

or
d)

Coverage

 0.001 0.01 0.1 1

Beta

 1

 31

 61

 91

 121

 151

 181

 211

C
ut

of
f

 0

 0.5

 1

 1.5

 2

Supertag Accuracy

 0.001 0.01 0.1 1

Beta

 1

 31

 61

 91

 121

 151

 181

 211

C
ut

of
f

 0.74

 0.76

 0.78

 0.8

 0.82

 0.84

 0.86

Parsing Time

 0.001 0.01 0.1 1

Beta

 1

 31

 61

 91

 121

 151

 181

 211
C

ut
of

f

 0

 0.2

 0.4

 0.6

 0.8

 1

FIGURE 6.13: Parsing behaviour for the 1791st sentence in section 00.

6.7.4 Sentence 212

In the sentence:

The U.S. , claiming some success in its trade diplomacy

, removed South Korea , Taiwan and Saudi Arabia from a

list of countries it is closely watching for allegedly

failing to honor U.S. patents , copyrights and other

intellectual-property rights .

Despite noPOS tagging errors, we observe strange patterns in supertag accuracy. In the area of low

F-score to the left in Figure 6.14 the parser is experiencingan explosion, and in the area to the right no

spanning analysis is found. This is strange as those are not the areas where the supertags chosen by the

parser are least accurate. Meanwhile the point of lowest supertag accuracy and the line of low accuracy

above it does not prevent a parse from being found.

6.7 INTERESTINGSENTENCES 73

Ambiguity

 0.001 0.01 0.1 1

Beta

 1

 31

 61

 91

 121

 151

 181

 211

C
ut

of
f

 1

 2

 3

 4

 5

 6

 7

 8

 9

(t
ag

s
/ w

or
d)

F-score

 0.001 0.01 0.1 1

Beta

 1

 31

 61

 91

 121

 151

 181

 211

C
ut

of
f

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

Supertag Accuracy

 0.001 0.01 0.1 1

Beta

 1

 31

 61

 91

 121

 151

 181

 211

C
ut

of
f

 0.88

 0.89

 0.9

 0.91

 0.92

 0.93

 0.94

 0.95

Parsing Time

 0.001 0.01 0.1 1

Beta

 1

 31

 61

 91

 121

 151

 181

 211
C

ut
of

f

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

FIGURE 6.14: Parsing behaviour for the sentence 212 sentence in section 00.

The speed plot also demonstrates strange behaviour. The thin band of particularly slow processing lines

up with the edge of the region in which a parse is found. This isprobably a peak because after this the

explosion occurs early enough for time to be saved, but it is still odd.

6.7.5 Sentence 274

Despite being extremely short and noPOS tag errors occurring, the following sentence displays some

surprising behaviour:

Previously , watch imports were denied such duty-free

treatment .

In Figure 6.15 the blue areas are caused by the parser failingto find a spanning analysis. What makes

this so strange is that the supertag accuracy is the same in the middle area as it is in the top right, where

the parser fails to find a spanning analysis. Also, the speed varies strangely across the bottom of the plot,

increasing more rapidly for slightly higher cutoffs, despite no noticeable change in ambiguity.

6.7 INTERESTINGSENTENCES 74

Ambiguity

 0.001 0.01 0.1 1

Beta

 1

 31

 61

 91

 121

 151

 181

 211

C
ut

of
f

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

(t
ag

s
/ w

or
d)

F-score

 0.001 0.01 0.1 1

Beta

 1

 31

 61

 91

 121

 151

 181

 211

C
ut

of
f

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Supertag Accuracy

 0.001 0.01 0.1 1

Beta

 1

 31

 61

 91

 121

 151

 181

 211

C
ut

of
f

 0.7

 0.75

 0.8

 0.85

 0.9

Parsing Time

 0.001 0.01 0.1 1

Beta

 1

 31

 61

 91

 121

 151

 181

 211
C

ut
of

f

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

FIGURE 6.15: Parsing behaviour for the sentence 274 sentence in section 00.

6.7.6 Sentence 302

This sentence is an example of a more complex case of the sentence 577:

First , they are designed to eliminate the risk of prepayment

- mortgage-backed securities can be retired early if interest

rates decline , and such prepayment forces investors to

redeploy their money at lower rates .

The POS tagger mislabelsforces as a noun instead of as a verb, andFirst as an adverb instead of

as an adjective. The strange behaviour shown in Figure 6.16 is a result of the supertagger gradually

providing more tags and the parser doing gymnastics to get the correct derivation. Being longer than

sentence 577 there is more scope for variation, as we see in the plot for F-score, which has many regions,

bounded vertically and horizontally by points at which the supertagger is able to change the tag set.

6.7 INTERESTINGSENTENCES 75

Ambiguity

 0.001 0.01 0.1 1

Beta

 1

 31

 61

 91

 121

 151

 181

 211

C
ut

of
f

 1

 2

 3

 4

 5

 6

(t
ag

s
/ w

or
d)

F-score

 0.001 0.01 0.1 1

Beta

 1

 31

 61

 91

 121

 151

 181

 211

C
ut

of
f

 0.68
 0.7
 0.72
 0.74
 0.76
 0.78
 0.8
 0.82
 0.84
 0.86
 0.88

Supertag Accuracy

 0.001 0.01 0.1 1

Beta

 1

 31

 61

 91

 121

 151

 181

 211

C
ut

of
f

 0.84
 0.85
 0.86
 0.87
 0.88
 0.89
 0.9
 0.91
 0.92
 0.93
 0.94

Parsing Time

 0.001 0.01 0.1 1

Beta

 1

 31

 61

 91

 121

 151

 181

 211
C

ut
of

f

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

FIGURE 6.16: Parsing behaviour for the sentence 302 sentence in section 00.

6.7.7 Sentence 596

This sentence demonstrates similar strange behaviour as sentence 212:

That commercial - which said Mr. Coleman wanted to take

away the right of abortion even in cases of rape and incest

, a charge Mr. Coleman denies - changed the dynamics of

the campaign , transforming it , at least in part , into a

referendum on abortion .

In Figure 6.17 in the left area the parser experiences an explosion, and in the right area no spanning

analysis is found. Strangely, the region in which supertag accuracy is lowest is in neither of these

regions and does not actually seem to influence F-score at all. We also observe that speed increases

considerably towards the edges of the region in which a parseis found, then drops away and remains

fairly constant in the explosion area.

6.7 INTERESTINGSENTENCES 76

Ambiguity

 0.001 0.01 0.1 1

Beta

 1

 31

 61

 91

 121

 151

 181

 211

C
ut

of
f

 1

 2

 3

 4

 5

 6

 7

 8

(t
ag

s
/ w

or
d)

F-score

 0.001 0.01 0.1 1

Beta

 1

 31

 61

 91

 121

 151

 181

 211

C
ut

of
f

 0.8
 0.82
 0.84
 0.86
 0.88
 0.9
 0.92
 0.94
 0.96
 0.98
 1

Supertag Accuracy

 0.001 0.01 0.1 1

Beta

 1

 31

 61

 91

 121

 151

 181

 211

C
ut

of
f

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

Parsing Time

 0.001 0.01 0.1 1

Beta

 1

 31

 61

 91

 121

 151

 181

 211
C

ut
of

f

 0

 0.2

 0.4

 0.6

 0.8

 1

FIGURE 6.17: Parsing behaviour for the sentence 596 sentence in section 00.

6.7.8 Sentence 691

The final sentence I consider is one of the most strange:

In her wake she left the bitterness and anger of a principal

who was her friend and now calls her a betrayer ; of

colleagues who say she brought them shame ; of students and

parents who defended her and insist she was treated harshly

; and of school-district officials stunned that despite the

bald-faced nature of her actions , she became something of a

local martyr .

A single POS tag error is made –stunned is labelled as a verb instead of as an adjective. Across the

very bottom and in the top right area no spanning analysis is found, while in the left area explosions

occur.

6.7 INTERESTINGSENTENCES 77

In all the other areas we get a variety of strange patterns. The precision and recall above a tag dictionary

cutoff of 31 appear to be the reverse of the supertag accuracy. The thin column of higher recall and

precision is where supertag accuracy is lowest and in the regions where supertag accuracy is highest the

parser fails either because of explosions or not being able to form a spanning analysis.

Speed also exhibits strange behaviour, following the trends in the F-score plot more than in the ambiguity

plot as would be expected. In particular, the time taken increases much sooner below a tag dictionary

cutoff of 31.

6.7 INTERESTINGSENTENCES 78

Ambiguity

 0.001 0.01 0.1 1

Beta

 1

 31

 61

 91

 121

 151

 181

 211

C
ut

of
f

 1

 2

 3

 4

 5

 6

 7

 8

(t
ag

s
/ w

or
d)

F-score

 0.001 0.01 0.1 1

Beta

 1

 31

 61

 91

 121

 151

 181

 211

C
ut

of
f

 0.7

 0.75

 0.8

 0.85

 0.9

Supertag Accuracy

 0.001 0.01 0.1 1

Beta

 1

 31

 61

 91

 121

 151

 181

 211

C
ut

of
f

 0.9
 0.91
 0.92
 0.93
 0.94
 0.95
 0.96
 0.97
 0.98
 0.99
 1

Precision

 0.001 0.01 0.1 1

Beta

 1

 31

 61

 91

 121

 151

 181

 211
C

ut
of

f

 0.7

 0.75

 0.8

 0.85

 0.9

Recall

 0.001 0.01 0.1 1

Beta

 1

 31

 61

 91

 121

 151

 181

 211

C
ut

of
f

 0.7

 0.75

 0.8

 0.85

 0.9

Parsing Time

 0.001 0.01 0.1 1

Beta

 1

 31

 61

 91

 121

 151

 181

 211

C
ut

of
f

 0

 0.2

 0.4

 0.6

 0.8

 1

FIGURE 6.18: Parsing behaviour for the sentence 691 sentence in section 00.

6.8 OPTIMAL COVERAGE ALGORITHM 79

6.8 Optimal Coverage Algorithm

Initially I focused on choosing beta levels that would maximise speed while achieving full coverage.

Using a set of sentences representative of the target corpus, the algorithm translates each sentence into a

line segment, and then locates a set of points such that everyline segment contains a point.

To translate each sentence into a line segment involves two binary searches on beta levels. The first is

for the largest beta value before a spanning analysis is not found. The second is for the last beta value

before the number of tags assigned leads to a chart explosion. These values define a line segment over

which the sentence is successfully parsed.

Now our problem is essentially to determine a set of points that together allow all of the sentences to be

parsed. We would also like these values to be as large as possible, as it is expected that larger values will

lead to a speed improvement. Both of these goals can be achieved by the following greedy algorithm:

• Initially label all line segments as uncovered

• Create an empty listnext

• For each of the endpoints in all of the lines, in sorted increasing order:

– If it is the point at which the chart explodes, add it tonext

– Otherwise, if it is uncovered, set this value as a beta level,and label all of the line segments

in next as covered

6.8.1 Correctness

To show that the algorithm is correct two points must be proved: first that every line segment contains a

point, and second that the set of points chosen are optimal.

Every line segment is added to thenext list at some point, since we iterate through all endpoints, and for

the first endpoint of each segment we place the segment in the list. When a beta level is chosen it covers

all sentences in thenext list, since they can be parsed at this level. Also, if there are any elements in

thenext list there must be an uncovered endpoint still to be considered, since the segments in thenext

list are all uncovered and only one of their endpoints have been seen. Therefore every segment will be

placed in thenext list at some point, and every segment placed in thenext list will be covered.

6.8 OPTIMAL COVERAGE ALGORITHM 80

To prove optimality consider the order in which the algorithm generates points. Every line segment

must contain a point, therefore the line segment that has thesmallest starting beta value creates a limit

on the lowest beta level. It cannot be any higher than that value, otherwise the sentence that line segment

corresponds to would not be parsed. Therefore we must place abeta level at that value, which the

algorithm does. All other sentences that can be parsed at this point can now be ignored, since they

will definitely be parsed. Now we have the same problem as initially, but on a smaller set. Repeated

application will lead to all segments containing a point, and none of the points can be removed, or moved

any higher without causing a sentence to not be parsed. Therefore the set of points chosen is optimal

6.8.2 Results

Using this algorithm and the results of the analysis from theprevious section I performed a series of

tests. Since this algorithm does not consider tag dictionary cutoff I ran separate tests at each of the

cutoffs used in the tests above. Since all of the behaviour tests were performed with the baseline model,

these tests were also performed with the baseline.

Table 6.5 clearly shows that this method is not perfect, but does produce fairly effective beta levels. With

the exception of the first cutoff, coverage is at least97.8% and most of the tests produce similar coverage

to the baseline model. Interestingly the tests with more levels perform considerably better and are the

only cases that out-perform the baseline. The best of these parameter sets does perform slightly worse,

as shown in Table 6.6, but makes even more impressive speed gains on Wikipedia, while maintaining

coverage above98.5%.

6.8.3 Issues

Based on these results it seems that coverage optimisation algorithm is working, providing a speed boost

while maintaining high coverage. However, we are not actually getting quite what we want. The main

issue is that complete coverage is actually too weak a requirement – we want to get the right parse,

not just any parse. Also, while the method will guarantee coverage for the sentences used, it is unclear

how large the set needs to be to ensure good generalisation toan entire corpus. The other potential

factor, optimising the dictionary cutoff does not appear tobe a major issue. In general it appears the tag

dictionary cutoff has very little influence on speed or accuracy, with the exception of extremely low and

high values, which exhibit irregular behaviour. This is useful because it means we can effectively ignore

the cutoff values and optimise the beta values alone.

6.8 OPTIMAL COVERAGE ALGORITHM 81

Betas Number Parsed FailedWSJSpeed
Cutoff 1 2 3 4 5 1 2 3 4 5 (sents / sec)

Baseline 0.075 0.03 0.01 0.005 0.001 9042 282 262 99 167 148 48.5
1 0.25 0.017 0.0058 0.0010 0.00012 7195 1202 314 286 171 832 40.4

11 0.63 0.017 0.0018 0.00012 – 7338 2025 334 83 – 220 45.1
21 0.17 0.017 0.0018 0.00012 – 8647 823 295 67 – 168 48.3
31 0.30 0.023 0.0058 0.0018 0.00012 8300 1151 242 106 57 144 49.6
41 0.30 0.023 0.0058 0.0018 0.00012 8335 1143 240 101 55 126 49.4
51 0.30 0.023 0.0058 0.0018 0.00019 8361 1133 233 100 45 128 49.9
61 0.30 0.023 0.0058 0.0018 0.00019 8375 1125 228 96 47 129 49.4
71 0.30 0.023 0.0058 0.0018 0.00019 8383 1124 225 95 44 129 49.0
81 0.30 0.017 0.0018 0.00015 – 8393 1170 244 48 – 145 44.1
91 0.30 0.017 0.0018 0.00015 – 8397 1172 240 47 – 144 43.3

101 0.30 0.017 0.0018 0.00015 – 8412 1167 235 42 – 144 43.2
111 0.30 0.017 0.0018 0.00015 – 8411 1169 237 41 – 142 42.8
121 0.30 0.017 0.0018 0.00015 – 8417 1166 234 39 – 144 42.6
131 0.30 0.017 0.0018 0.00015 – 8426 1158 229 40 – 147 42.0
141 0.30 0.017 0.0018 0.00015 – 8426 1158 229 40 – 147 42.0
151 0.30 0.017 0.0018 0.00015 – 8427 1157 229 39 – 148 41.7
161 0.40 0.021 0.0018 0.00015 – 8205 1348 260 38 – 149 41.5
171 0.40 0.021 0.0018 0.00015 – 8207 1345 256 37 – 155 40.8
181 0.40 0.021 0.0018 0.00015 – 8207 1345 257 36 – 155 40.7
191 0.40 0.021 0.0018 0.00015 – 8212 1342 256 35 – 155 40.3
201 0.40 0.021 0.0018 0.00015 – 8212 1342 254 35 – 157 40.0
211 0.40 0.023 0.0018 0.00015 – 8213 1320 271 36 – 160 39.3

TABLE 6.5: Speed and coverage for the parameters produced by the coverage optimi-
sation algorithm.

Supertag Accuracy Ambiguity F-score Speed
(%) (cats / word) (%) (sent / sec)

Set Single Multiple

WSJ

Baseline 91.14 96.07 1.27 83.41 48.5
Cutoff 51 91.14 94.13 1.10 83.15 49.9

Wikipedia
Baseline 89.8 95.4 1.3 82.5 46.31

Cutoff 51 89.8 93.2 1.1 81.3 53.6

TABLE 6.6: Performance of the best parameters produced by the coverage optimisation algorithm.

6.9 SUMMARY 82

However, we are still faced with the problem of accuracy as opposed to coverage. A simple approach

would be to shift the two endpoints defining our line segment to cover only the values where accuracy

is above some threshold. While this idea is valid for the smaller beta value, it is not for the larger one.

Moving the larger value is not possible because that does notprevent the sentence from being parsed in

that region, and we may choose a beta level in that region as the result of some other sentence. Therefore

we cannot guarantee that the level within the shortened linesegment is the level that sentence will be

parsed at. We can move the lower value because the beta levelswill be considered in decreasing order

and so the sentence will be parsed before we reach any beta levels in the ignored lower region.

The algorithm developed here may be a step in the right direction, but it is not a complete solution to the

challenge of optimising these parameters.

6.9 Summary

Optimisation of the beta levels and tag dictionary cutoffs used by the supertagger leads to considerable

improvements in efficiency. Developing a method of optimisation is made difficult by the fact that there

are five levels and while most sentences exhibit similar behaviour at all levels, some will be parsed

progressively less accurately, while others are parsed progressively more accurately. The investigation

presented in this chapter is the first attempt to systematically explore this behaviour. If we can use these

observations to improve the interaction between the parserand supertagger we will obtain significant

speed and accuracy benefits.

The architectural developments described in the previous two chapters have enabled the creation of

models with more features as we are no longer bound by the amount of RAM on a single machine. This

chapter also explored a range of features, including feature sets that produced a statistically significant

improvement in recall. In this way we are able to use adaptivetraining to improve accuracy as well as

speed.

CHAPTER 7

Conclusion

7.1 Future Work

A wide range of directions exist for extension of this work. There is great scope for development of

the algorithms, many other domains to apply the adaptation training method to, and the exploration of

parameter optimisation here lays the groundwork for a greatdeal of further investigation.

The most direct extension would be to apply these adaptive training methods to the biomedical domain.

A large collection of documents from the domain and an evaluation set already exist, making it a sensible

next step. Cross-corpus tests on theWSJ, Wikipedia and the PubMed corpus would provide greater

evidence for the adaptation results presented here.

The pre-processing methods of sentence boundary detection, tokenisation used here were very simple,

which may be decreasing the quality of the automatically labelled data. The next stage in the process,

using the parser to choose tags would also be worth investigating further. Since this stage only needs

to run once to produce the training set it may be worth loosening restrictions on the parser to produce

better results at a slower rate. This would provider greaterscope for exploring which sentences provide

the most benefit for adaptive training.

This work has clearly demonstrated that gold standard data can make a significant difference to accuracy

on newspaper text, even when it makes up less than1% of the training data. Open questions include how

much gold standard data is needed to make a significant difference, and how much difference data with

gold standardPOStags and automatically assigned supertags would make. Further, is adaptive training

of thePOStagger possible? Specifically, using the supertagger to inform thePOStagger in the same way

that in this work the parser has been used to inform the supertagger. In this case the aim would be to

produce the set ofPOStags that will lead the supertagger to produce a more accurate set of supertags.

83

7.1 FUTURE WORK 84

Now that we have a range of different algorithms for model estimation it would be worth performing

co-training experiments. Each model could be trained on thegold standard data, then used to parse

extra data incrementally. The results of all of the models could be compared and when there is complete

agreement, or at least a majority, the instance would be added to the training set and the process repeated.

Another option would be to simply feed the results from one model into all others, effectively allowing

all of the models to develop with some cross-pollination of tagging behaviour. A simpler method that

takes a different tack would be to train a model using one algorithm, then use the final weights as the

initial weighs for another algorithm, perhaps leading to a better local optimum. Finally, the whole

training process could be kept entirely separate and the parser could determine the tag set by using

multiple taggers, one for each model.

Additionally, the current system takes the weights produced by the perceptron algorithms, normalises

them and treats them as a probability distribution in the same way as the weights fromGIS andBFGSare

treated. The results here have shown that while fast, singletagging is not accurate enough to be effec-

tive, but perhaps a multi-tagging perceptron algorithm could be implemented. For example, instead of

producing tag–word pairs, the model could produce tagset–word pairs, and the predicted tagsets would

be judged correct simply if they contained the correct tag. This particular method would dramatically

increase the number of possible labels and so may be infeasible, but other approaches, such as always

providing tags with weights within a certain ratio of the toptag and then adjusting both if neither is

correct, may be effective.

The training method for the perceptron based algorithms is incremental, taking an existing model and

adjusting it after each observation. This means they could continue to adapt as the parser is running,

effectively learning continuously. It would be interesting to apply this method to the adaptive training

experiments here and measure performance and changes in tagging behaviour over time, to observe the

tagger adapting to the new domain.

These algorithms are also very flexible, and another interesting variation would be to tag an entire

sentence at once by combining sums of local features to effectively create global features. Even at

a local scale there is great scope for further investigation. While the initial tests here have not lead

to overwhelmingly positive results, there is a great deal ofextra data that could be used. The variety

of features considered was also somewhat limited, partly due to the current architecture for defining

features. It would be interesting to explore the use of 64-bit hashes as representations of features to

enable the use of a more diverse range of features. For example, features that encode the presence of one

7.2 CONTRIBUTIONS 85

attribute and the absence of another. Also, many of the current features contribute little to the model,

with weights close to or exactly zero. Feature selection could improve performance, or at least free up

memory usage by the supertagger, potentially enabling the use of other, more exotic features.

The exploration in the analysis chapter laid the groundworkfor a great deal of work not only for the

supertagger, but also for the parser. The challenge of developing an effective and well founded method

of optimising the beta levels and cutoffs remains unsolved.The exploration of some of the stranger

cases indicated that there are specific issues in all areas, right from thePOStagger up. The length-based

analysis suggested that different settings depending on length may be worthwhile. It would also be

interesting to compare the behaviour of various models.

7.2 Contributions

I have demonstrated that adaptively training a supertaggerboosts parsing speed and accuracy consider-

ably. I have demonstrated that perceptron based algorithmscan estimate model weights just as well as

maximum entropy methods. I have taken the first steps towardsa methodical exploration of the effects

of beta levels on parser behaviour. And in the process of completing this work, I have made significant

changes to a high performance state-of-the-art system, including implementing new weight estimation

methods, and parallelising the supertagger training process.

The key contribution is the demonstration that adaptive training improves parser efficiency. The strat-

egy of constructing a supertagging model that second-guesses the parser is novel and clearly effective.

Importantly, these effects are not confined to a single domain, but have been demonstrated on Wikipedia

text as well as newspaper text. It is also clear that the supertagger is adapting to the particular style of

the domain it trains on, as models trained on Wikipedia perform poorly on the Wall Street Journal, and

vice versa.

These experiments were not possible previously because of memory and time constraints. The second

major contribution of this work was the implementation of alternative algorithms and a parallel form

of the training process. These developments enabled the useof far larger data sets within the same

training time and provided access to moreRAM. As well as implementing these methods, this work has

demonstrated that they produce models that are just as accurate as previous models.

7.2 CONTRIBUTIONS 86

The third significant contribution is an exploration of the supertagger and parser interaction. No such

comprehensive analysis has been performed previously and the results of this work indicate that consid-

erable gains in performance are possible if an effective means of optimising the parameters can be found.

As part of this work an algorithm to optimise coverage was invented and the challenges of extending the

method to optimise performance were explored.

Initially the system produced an F-score of83.41% and ran at48.5 sentences per second on the Wall

Street Journal and produced an F-score of82.5% and ran at46.3 sentences per second on Wikipedia.

The supertagging model that produced these results took twohours to train, using only forty thousand

sentences. UsingMIRA a model was trained in six hours but on one hundred times as much data,

leading to an F-score of83.99% and speed of90.2 sentences per second on theWSJ. Another model

trained on Wikipedia instead of newspaper text was able to parse60.5 sentences a second and achieved

an F-score of83.3%. These models are just as accurate as the original system, but the first is86%

faster on newspaper text and the second is30% faster on Wikipedia, clearly demonstrating that adaptive

training leads to considerable performance improvements.These developments will lead directly to

improvements in many other Natural Language Processing systems that rely on the output of state-of-

the-art parsers, such as Question Answering systems.

Bibliography

Srinivas Bangalore. 1997. Performance evaluation of supertagging for partial parsing. InProceedings

of the Fifth International Workshop on Parsing Technologies. Boston.

Srinivas Bangalore and Aravind K. Joshi. 1999. Supertagging: An approach to almost parsing.Compu-

tational Linguistics, 25(2):237–265.

L. E. Baum and T. Petrie. 1966. Statistical inference for probabilistic functions of finite state markov

chains.The Annals of Mathematical Statistics, 37(6):1554–1563.

Steven Bird, Edward Loper, and Ewan Klein. 2009.Natural Language Processing with Python. O’Reilly

Media Inc.

Avrim Blum and Tom Mitchell. 1998. Combining labeled and unlabeled data with co-training. InCOLT’

98: Proceedings of the eleventh annual conference on Computational learning theory, pages 92–100.

ACM, Madison, Wisconsin, United States.

Peter F. Brown, John Cocke, Stephen A. Della Pietra, VincentJ. Della Pietra, Fredrick Jelinek, John D.

Lafferty, Robert L. Mercer, and Paul S. Roossin. 1990. A statistical approach to machine translation.

Computational Linguistics, 16(2):79–85.

C. G. Broyden. 1970. The convergence of a class of double-rank minimization algorithms.Journal of

the Institute of Mathematics and Its Applications, 6:76–90.

Raman Chandrasekar and Srinivas Bangalore. 1997a. Gleaning information from the web: Using syntax

to filter out irrelevant information. InWorld Wide Web, Stanford University.

Raman Chandrasekar and Srinivas Bangalore. 1997b. Using supertags in document filtering: The effect

of increased context on information retrieval effectiveness. InIn Proceedings of Recent Advances in

NLP (RANLP) ’97, Tzigov Chark.

Raman Chandrasekar and Srinivas Bangalore. 1997c. Using syntactic information in document filtering:

A comparative study of part-of-speech tagging and supertagging. Technical report.

Eugene Charniak. 1997. Statistical parsing with a context-free grammar and word statistics. InPro-

ceedings of the Fourteenth National Conference on Artificial Intelligence. AAAI Press / MIT Press,

Menlo Park.

John Chen, Srinivas Bangalore, Michael Collins, and Owen Rambow. 2002. Reranking an n-gram

supertagger. InProceedings of the TAG+ Workshop, pages 259––268. Venice, Italy.

John Chen, Srinivas Bangalore, and K. Vijay-Shanker. 1999.New models for improving supertag dis-

ambiguation. InProceedings of the 9th Meeting of EACL, pages 188–195. Bergen, Norway.

N Chinchor. 1992. Statistical significance of muc-6 results.

87

http://acl.ldc.upenn.edu/M/M92/M92-1003.pdf

BIBLIOGRAPHY 88

Stephen Clark. 2002. Supertagging for combinatory categorial grammar. InProceedings of the Sixth

International Workshop on Tree Adjoining Grammar and Related Frameworks (TAG+6), pages 19—

-24. Venice, Italy.

Stephen Clark, Ann Copestake, James R. Curran, Yue Zhang, Aurelie Herbelot, James Haggerty, Byung-

Gyu Ahn, Curt Van Wyk, Jessika Roesner, Jonathan K. Kummerfeld, and Tim Dawborn. 2009. Large-

scale syntactic processing: Parsing the web. Technical report, JHU CLSP Workshop.

Stephen Clark and James Curran. 2007a. Perceptron trainingfor a wide-coverage lexicalized-grammar

parser. InACL 2007 Workshop on Deep Linguistic Processing, pages 9–16. Association for Compu-

tational Linguistics, Prague, Czech Republic.

Stephen Clark and James R. Curran. 2003. Log-linear models for wide-coverage ccg parsing. InPro-

ceedings of the 2003 conference on Empirical methods in natural language processing, pages 97–104.

Association for Computational Linguistics.

Stephen Clark and James R. Curran. 2004. The importance of supertagging for wide-coverage ccg

parsing. InProceedings of 20th International Conference on Computational Linguistics (COLING),

pages 282–288. Geneva, Switzerland.

Stephen Clark and James R. Curran. 2007b. Wide-coverage eficient statistical parsing with ccg and

log-linear models.Computational Linguistics, 33(4):493–552.

M. Collins and Y. Singer. 1999. Unsupervised models for named entity classification. InJoint SIGDAT

Conference on Empirical Methods in NLP and Very Large Corpora.

Michael Collins. 2002. Discriminative training methods for hidden markov models: Theory and exper-

iments with perceptron algorithms. InProceedings of the 2002 Conference on Empirical Methods in

Natural Language Processing, pages 1–8. Association for Computational Linguistics.

Michael Collins and Brian Roark. 2004. Incremental parsingwith the perceptron algorithm. InProceed-

ings of the 42nd Meeting of the ACL, pages 111––118. Barcelona, Spain.

Nicholas Cooper. 2007.Improved Statistical Models for Supertagging. Ph.D. thesis.

Koby Crammer and Yoram Singer. 2003. Ultraconservative online algorithms for multiclass problems.

Journal of Machine Learning Research, 3:951–991.

James R. Curran. 2003. Blueprint for a high performance nlp infrastructure. InSEALTS ’03: Pro-

ceedings of the HLT-NAACL 2003 workshop on Software engineering and architecture of language

technology systems, pages 39–44. Association for Computational Linguistics,Edmonton, Canada.

James R. Curran and Stephen Clark. 2003. Investigating gis and smoothing for maximum entropy

taggers. InProceedings of the 10th Meeting of the EACL, pages 91––98. Budapest, Hungary.

J. N. Darroch and D. Ratcliff. 1972. Generalized iterative scaling for log-linear models.The Annals of

Mathematical Statistics, 43(5):1470–1480.

R. Fletcher. 1970. A new approach to variable metric algorithms.Computer Journal, 13:317–322,.

Yoav Freund and Robert E. Schapire. 1997. A decision-theoretic generalization of on-line learning and

an application to boosting.Journal of Computer and Systems Science, 55(1):119–139.

Yoav Freund and Robert E. Schapire. 1999. Large margin classification using the perceptron algorithm.

Machine Learning, 37(3):277–296.

BIBLIOGRAPHY 89

N. Ge, J. Hale, and E. Charniak. 1998. A statistical approachto anaphora resolution. InProceedings of

the Sixth Workshop on Very Large Corpora, pages 161—-170. Montreal, Canada.

D. Goldfarb. 1970. A family of variable metric updates derived by variational means.Mathematics of

Computation, 24:23–26.

Sally A. Goldman and Yan Zhou. 2000. Enhancing supervised learning with unlabeled data. InICML

’00: Proceedings of the Seventeenth International Conference on Machine Learning, pages 327–334.

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

William Gropp, Ewing Lusk, Nathan Doss, and Anthony Skjellum. 1996. A high-performance, portable

implementation of the mpi message passing interface standard. Parallel Computing, 22(6):789–828.

Julia Hockenmaier. 2003.Data and Models for Statistical Parsing with Combinatory Categorial Gram-

mar. Ph.D. thesis, University of Edinburgh.

Julia Hockenmaier and Mark Steedman. 2001. Generative models for statistical parsing with combina-

tory categorial grammar. InACL ’02: Proceedings of the 40th Annual Meeting on Association for

Computational Linguistics, pages 335–342. Association for Computational Linguistics.

Baden Hughes, Srikumar Venugopal, and Rajkumar Buyya. 2004. Grid-based indexing of a newswire

corpus. InGRID ’04: Proceedings of the 5th IEEE/ACM International Workshop on Grid Computing,

pages 320–327. IEEE Computer Society, Washington, DC, USA.

E. T. Jaynes. 1957. Information theory and statistical mechanics.Physical Review, 106(4):620–630.

Aravind K. Joshi and Srinivas Bangalore. 1994. Disambiguation of super parts of speech (or supertags):

almost parsing. InProceedings of the 15th conference on Computational linguistics, pages 154–160.

Kyoto, Japan.

Jun’ichi Kazama and Kentaro Torisawa. 2008. Inducing gazetteers for named entity recognition by

large-scale clustering of dependency relations. InProceedings of ACL-08: HLT, pages 407–415.

Association for Computational Linguistics, Columbus, Ohio.

Raymond Lau, Ronald Rosenfeld, and Salim Roukos. 1993. Adaptive language modeling using the max-

imum entropy principle. InHLT ’93: Proceedings of the workshop on Human Language Technology,

pages 108–113. Association for Computational Linguistics, Princeton, New Jersey.

Wendy Grace Lehnert. 1977.The process of question answering. Ph.D. thesis, New Haven, CT, USA.

Robert Malouf. 2002. A comparison of algorithms for maximumentropy parameter estimation. In

Proceedings of the Sixth Workshop on Natural Language Learning, pages 49––55. Taipei, Taiwan.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. 1993a. Building a large annotated

corpus of english: the penn treebank.Computational Linguistics, 19(2):313–330.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. 1993b. Building a large annotated

corpus of english: The penn treebank.Computational Linguistics, 19(2):313–330.

John D. Laffertyand Andrew McCallum and Fernando C. N. Pereira. 2001. Conditional random fields:

Probabilistic models for segmenting and labeling sequencedata. InICML ’01: Proceedings of the

Eighteenth International Conference on Machine Learning, pages 282–289. Morgan Kaufmann Pub-

lishers Inc., San Francisco, CA, USA.

BIBLIOGRAPHY 90

David McClosky, Eugene Charniak, and Mark Johnson. 2006. Effective self-training for parsing. In

Proceedings of The Annual Conference of the North American Chapter of the Association for Com-

putational Linguistics.

P. Miller. 2002. pympi–an introduction to parallel python using mpi.Livermore National Laboratories,

11.

R. Mitkov. 2002.Anaphora Resolution. Pearson Education.

Adwait Ratnaparkhi. 1996. A maximum entropy model for part-of-speech tagging. In Eric Brill and

Kenneth Church, editors,Proceedings of the Empirical Methods in Natural Language Processing,

pages 133–142. Philadelphia, Pa. USA.

F. Rosenblatt. 1958. The perceptron - a probabilistic modelfor information - storage and organization

in the brain.Psychological Review, 65(6):386–408.

Kenji Sagae and Alon Lavie. 2005. A classifier-based parser with linear run-time complexity. InPro-

ceedings of the Ninth International Workshop on Parsing Technology, pages 125–132. Association for

Computational Linguistics, Vancouver, British Columbia.

Anoop Sarkar. 2001. Applying co-training methods to statistical parsing. InNAACL ’01: Second

meeting of the North American Chapter of the Association forComputational Linguistics on Language

technologies 2001, pages 1–8. Association for Computational Linguistics, Pittsburgh, Pennsylvania.

Anoop Sarkar. 2007.Combining Supertagging and Lexicalized Tree-Adjoining Grammar Parsing, chap-

ter TBC, page TBC. MIT Press.

Anoop Sarkar, Fei Xia, and Aravind Joshi. 2000. Some experiments on indicators of parsing complexity

for lexicalized grammars. InProceedings of COLING, pages 37–42.

D. F. Shanno. 1970. Conditioning of quasi-newton methods for function minimization.Mathematics of

Computation, 24:647–656.

M. Snir, S. W. Otto, S. Huss-Lederman, D. W. Walker, and J. Dongarra. 1995.MPI: The Complete

Reference. MIT Press, Cambridge, MA.

Mark Steedman. 2000.The Syntactic Process. MIT Press, Cambridge, MA, USA.

A. Viterbi. 1967. Error bounds for convolutional codes and an asymptotically optimum decoding algo-

rithm. Information Theory, IEEE Transactions on, 13(2):260–269.

David Yarowsky. 1995. Unsupervised word sense disambiguation rivaling supervised methods. In

Proceedings of the 33rd annual meeting on Association for Computational Linguistics, pages 189–

196. Association for Computational Linguistics.

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Chapter 1. Introduction
	1.1. Contributions

	Chapter 2. Literature Review
	2.1. Grammars
	2.2. Supertagging
	2.3. Summary

	Chapter 3. Evaluation
	3.1. Data
	3.2. Metrics
	3.3. Baseline Performance
	3.4. Summary

	Chapter 4. Algorithms
	4.1. Background
	4.2. Implementation
	4.3. Results
	4.4. Summary

	Chapter 5. Adaptation
	5.1. Background
	5.2. Implementation
	5.3. Results
	5.4. Summary

	Chapter 6. Optimisation and Analysis
	6.1. Background
	6.2. Implementation
	6.3. Feature Extension
	6.4. The Influence of Beta Levels
	6.5. Aggregated Analysis of Parser Behaviour
	6.6. Behaviour by Sentence Length
	6.7. Interesting Sentences
	6.8. Optimal Coverage Algorithm
	6.9. Summary

	Chapter 7. Conclusion
	7.1. Future Work
	7.2. Contributions

	Bibliography

